cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A322362 a(n) = gcd(n, A166590(n)), where A166590 is completely multiplicative with a(p) = p+2 for prime p.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 5, 16, 1, 2, 1, 4, 3, 2, 1, 8, 1, 2, 1, 4, 1, 10, 1, 32, 1, 2, 7, 4, 1, 2, 3, 8, 1, 6, 1, 4, 5, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 20, 1, 2, 9, 64, 5, 2, 1, 4, 1, 14, 1, 8, 1, 2, 5, 4, 1, 6, 1, 16, 1, 2, 1, 12, 1, 2, 1, 8, 1, 10, 1, 4, 3, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8, 105
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, GCD[n, Times@@ ((First[#]+2)^Last[#] &/@FactorInteger[n])]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018~ *)
  • PARI
    A166590(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] += 2); factorback(f); };
    A322362(n) = gcd(n, A166590(n));

Formula

a(n) = gcd(n, A166590(n)).
a(A037074(n)) = A006512(n).

A322354 Greatest common divisor of product p and product (p+2), where p ranges over distinct prime divisors of n; a(n) = gcd(A007947(n), A166590(A007947(n))).

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 5, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 10, 1, 2, 1, 2, 7, 2, 1, 2, 3, 2, 1, 6, 1, 2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 10, 1, 2, 3, 2, 5, 2, 1, 2, 1, 14, 1, 2, 1, 2, 5, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 10, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 105
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Times @@ Power @@@ ({#[[1]] + 2, #[[2]]} & /@ FactorInteger[n])]; rad[n_] := Times @@ (First@# & /@ FactorInteger@n); a[n_] := GCD[rad[n], f[rad[n]]]; Array[a, 120] (* Amiram Eldar, Dec 16 2018 *)
  • PARI
    A166590(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] += 2); factorback(f); };
    A322362(n) = gcd(n, A166590(n));
    A007947(n) = factorback(factorint(n)[, 1]);
    A322354(n) = A322362(A007947(n));
    \\ Alternatively as:
    A322354(n) = gcd(A007947(n), A166590(A007947(n)));

Formula

a(n) = A322362(A007947(n)) = gcd(A007947(n), A166590(A007947(n))).
a(n) = A322356(n) * A322357(n).

A003959 If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(1) = 1.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 27, 16, 18, 12, 36, 14, 24, 24, 81, 18, 48, 20, 54, 32, 36, 24, 108, 36, 42, 64, 72, 30, 72, 32, 243, 48, 54, 48, 144, 38, 60, 56, 162, 42, 96, 44, 108, 96, 72, 48, 324, 64, 108, 72, 126, 54, 192, 72, 216, 80, 90, 60, 216, 62, 96, 128, 729, 84, 144, 68
Offset: 1

Views

Author

Keywords

Comments

Completely multiplicative.
Sum of divisors of n with multiplicity. If n = p^m, the number of ways to make p^k as a divisor of n is C(m,k); and sum(C(m,k)*p^k) = (p+1)^k. The rest follows because the function is multiplicative. - Franklin T. Adams-Watters, Jan 25 2010

Crossrefs

Programs

  • Haskell
    a003959 1 = 1
    a003959 n = product $ map (+ 1) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
  • Maple
    a:= n-> mul((i[1]+1)^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]+1)^fi[[All, 2]])); a /@ Range[67] (* Jean-François Alcover, Apr 22 2011 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X-p*X))[n]) /* Ralf Stephan */
    

Formula

Multiplicative with a(p^e) = (p+1)^e. - David W. Wilson, Aug 01 2001
Sum_{n>0} a(n)/n^s = Product_{p prime} 1/(1-p^(-s)-p^(1-s)) (conjectured). - Ralf Stephan, Jul 07 2013
This follows from the absolute convergence of the sum (compare with a(n) = n^2) and the Euler product for completely multiplicative functions. Convergence occurs for at least Re(s)>3. - Thomas Anton, Jul 15 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065488/2 = 1/(2*A005596) = 1.3370563627850107544802059152227440187511993141988459926... - Vaclav Kotesovec, Jul 17 2021
From Thomas Scheuerle, Jul 19 2021: (Start)
a(n) = gcd(A166642(n), A166643(n)).
a(n) = A166642(n)/A061142(n).
a(n) = A166643(n)/A165824(n).
a(n) = A166644(n)/A165825(n).
a(n) = A166645(n)/A165826(n).
a(n) = A166646(n)/A165827(n).
a(n) = A166647(n)/A165828(n).
a(n) = A166649(n)/A165830(n).
a(n) = A166650(n)/A165831(n).
a(n) = A167351(n)/A166590(n). (End)
Dirichlet g.f.: zeta(s-1) * Product_{primes p} (1 + 1/(p^s - p - 1)). - Vaclav Kotesovec, Aug 22 2021

Extensions

Definition reedited (with formula) by Daniel Forgues, Nov 17 2009

A322357 a(n) = A322354(n) / A322356(n).

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2018

Keywords

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Times @@ Power @@@ ({#[[1]] + 2, #[[2]]} & /@ FactorInteger [n])]; rad[n_] := Times @@ (First@# & /@ FactorInteger@n); fun[p_, n_] := If[ PrimeQ[p + 2] && Divisible[n, p + 2], p + 2, 1]; a[n_] := GCD[rad[n], f[rad[n]]]/ Times @@ (fun[#, n] & /@ FactorInteger[n][[;; , 1]]); Array[a, 120] (* Amiram Eldar, Dec 16 2018 *)
  • PARI
    A166590(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] += 2); factorback(f); };
    A322362(n) = gcd(n, A166590(n));
    A007947(n) = factorback(factorint(n)[, 1]);
    A322354(n) = A322362(A007947(n));
    A322356(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(isprime(f[i,1]+2)&&!(n%(f[i,1]+2)), m *= (f[i,1]+2))); (m); };
    A322357(n) = (A322354(n)/A322356(n));

Formula

a(n) = A322354(n) / A322356(n).

A167351 Totally multiplicative sequence with a(p) = (p+1)*(p+2) = p^2+3p+2 for prime p.

Original entry on oeis.org

1, 12, 20, 144, 42, 240, 72, 1728, 400, 504, 156, 2880, 210, 864, 840, 20736, 342, 4800, 420, 6048, 1440, 1872, 600, 34560, 1764, 2520, 8000, 10368, 930, 10080, 1056, 248832, 3120, 4104, 3024, 57600, 1482, 5040, 4200, 72576, 1806, 17280, 1980, 22464
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 10 2016 *)

Formula

Multiplicative with a(p^e) = ((p+1)*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)+1)*(p(k)+2))^e(k). a(n) = A003959(n) * A166590(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + 3*p + 1)) = 1.224476389903759550811745481197762941643093896189832037452375111814242433... - Vaclav Kotesovec, Sep 20 2020

A167303 Totally multiplicative sequence with a(p) = 2*(p+2) for prime p.

Original entry on oeis.org

1, 8, 10, 64, 14, 80, 18, 512, 100, 112, 26, 640, 30, 144, 140, 4096, 38, 800, 42, 896, 180, 208, 50, 5120, 196, 240, 1000, 1152, 62, 1120, 66, 32768, 260, 304, 252, 6400, 78, 336, 300, 7168, 86, 1440, 90, 1664, 1400, 400, 98, 40960, 324, 1568
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 07 2016 *)
    f[p_, e_] := (2*(p+2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 18 2023 *)

Formula

Multiplicative with a(p^e) = (2*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(p(k)+2))^e(k).
a(n) = A061142(n) * A166590(n) = 2^bigomega(n) * A166590(n) = 2^A001222(n) * A166590(n).

A167304 Totally multiplicative sequence with a(p) = 3*(p+2) for prime p.

Original entry on oeis.org

1, 12, 15, 144, 21, 180, 27, 1728, 225, 252, 39, 2160, 45, 324, 315, 20736, 57, 2700, 63, 3024, 405, 468, 75, 25920, 441, 540, 3375, 3888, 93, 3780, 99, 248832, 585, 684, 567, 32400, 117, 756, 675, 36288, 129, 4860, 135, 5616, 4725, 900, 147, 311040, 729, 5292
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*3^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 07 2016 *)
    f[p_, e_] := (3*(p+2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 21 2023 *)

Formula

Multiplicative with a(p^e) = (3*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product (3*(p(k)+2))^e(k).
a(n) = A165824(n) * A166590(n) = 3^bigomega(n) * A166590(n) = 3^A001222(n) * A166590(n).

A167305 Totally multiplicative sequence with a(p) = 4*(p+2) for prime p.

Original entry on oeis.org

1, 16, 20, 256, 28, 320, 36, 4096, 400, 448, 52, 5120, 60, 576, 560, 65536, 76, 6400, 84, 7168, 720, 832, 100, 81920, 784, 960, 8000, 9216, 124, 8960, 132, 1048576, 1040, 1216, 1008, 102400, 156, 1344, 1200, 114688, 172, 11520, 180, 13312, 11200, 1600
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*4^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 07 2016 *)
    f[p_, e_] := (4*(p+2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 21 2023 *)

Formula

Multiplicative with a(p^e) = (4*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product (4*(p(k)+2))^e(k).
a(n) = A165825(n) * A166590(n) = 4^bigomega(n) * A166590(n) = 4^A001222(n) * A166590(n).

A167306 Totally multiplicative sequence with a(p) = 5*(p+2) for prime p.

Original entry on oeis.org

1, 20, 25, 400, 35, 500, 45, 8000, 625, 700, 65, 10000, 75, 900, 875, 160000, 95, 12500, 105, 14000, 1125, 1300, 125, 200000, 1225, 1500, 15625, 18000, 155, 17500, 165, 3200000, 1625, 1900, 1575, 250000, 195, 2100, 1875, 280000, 215, 22500, 225, 26000
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*5^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 07 2016 *)
    f[p_, e_] := (5*(p+2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 19 2023 *)

Formula

Multiplicative with a(p^e) = (5*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product (5*(p(k)+2))^e(k).
a(n) = A165826(n) * A166590(n) = 5^bigomega(n) * A166590(n) = 5^A001222(n) * A166590(n).

A167307 Totally multiplicative sequence with a(p) = 6*(p+2) for prime p.

Original entry on oeis.org

1, 24, 30, 576, 42, 720, 54, 13824, 900, 1008, 78, 17280, 90, 1296, 1260, 331776, 114, 21600, 126, 24192, 1620, 1872, 150, 414720, 1764, 2160, 27000, 31104, 186, 30240, 198, 7962624, 2340, 2736, 2268, 518400, 234, 3024, 2700, 580608, 258, 38880, 270
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*6^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 07 2016 *)
    f[p_, e_] := (6*(p+2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 19 2023 *)

Formula

Multiplicative with a(p^e) = (6*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product (6*(p(k)+2))^e(k).
a(n) = A165827(n) * A166590(n) = 6^bigomega(n) * A166590(n) = 6^A001222(n) * A166590(n).
Showing 1-10 of 22 results. Next