cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166591 Totally multiplicative sequence with a(p) = p+3 for prime p.

Original entry on oeis.org

1, 5, 6, 25, 8, 30, 10, 125, 36, 40, 14, 150, 16, 50, 48, 625, 20, 180, 22, 200, 60, 70, 26, 750, 64, 80, 216, 250, 32, 240, 34, 3125, 84, 100, 80, 900, 40, 110, 96, 1000, 44, 300, 46, 350, 288, 130, 50, 3750, 100, 320, 120, 400, 56, 1080, 112, 1250, 132, 160
Offset: 1

Views

Author

Jaroslav Krizek, Oct 17 2009

Keywords

Programs

  • Mathematica
    f[p_, e_] := (p + 3)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Vaclav Kotesovec, Feb 11 2023 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, f[i,1] += 3); factorback(f); \\ Michel Marcus, Jun 09 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-p*X-3*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2023

Formula

Multiplicative with a(p^e) = (p+3)^e.
If n = Product p(k)^e(k) then a(n) = Product (p(k)+3)^e(k).
From Vaclav Kotesovec, Feb 11 2023: (Start)
Dirichlet g.f.: Product_{p prime} 1 / (1 - p^(1-s) - 3*p^(-s)).
Dirichlet g.f.: zeta(s-1) * (1 + 3/(2^s - 5)) * Product_{p prime, p>2} (1 + 3/(p^s - p - 3)).
Sum_{k=1..n} a(k) has average order 3 * c * zeta(r-1) * n^r / (5*log(5)), where r = log(5)/log(2) = 2.321928094... and c = Product_{p prime, p>2} (1 + 3/(p^r - p - 3)) = 1.68551448153095... (End)

Extensions

More terms from Michel Marcus, Jun 09 2014