A166591 Totally multiplicative sequence with a(p) = p+3 for prime p.
1, 5, 6, 25, 8, 30, 10, 125, 36, 40, 14, 150, 16, 50, 48, 625, 20, 180, 22, 200, 60, 70, 26, 750, 64, 80, 216, 250, 32, 240, 34, 3125, 84, 100, 80, 900, 40, 110, 96, 1000, 44, 300, 46, 350, 288, 130, 50, 3750, 100, 320, 120, 400, 56, 1080, 112, 1250, 132, 160
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := (p + 3)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Vaclav Kotesovec, Feb 11 2023 *)
-
PARI
a(n) = my(f=factor(n)); for (i=1, #f~, f[i,1] += 3); factorback(f); \\ Michel Marcus, Jun 09 2014
-
PARI
for(n=1, 100, print1(direuler(p=2, n, 1/(1-p*X-3*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2023
Formula
Multiplicative with a(p^e) = (p+3)^e.
If n = Product p(k)^e(k) then a(n) = Product (p(k)+3)^e(k).
From Vaclav Kotesovec, Feb 11 2023: (Start)
Dirichlet g.f.: Product_{p prime} 1 / (1 - p^(1-s) - 3*p^(-s)).
Dirichlet g.f.: zeta(s-1) * (1 + 3/(2^s - 5)) * Product_{p prime, p>2} (1 + 3/(p^s - p - 3)).
Sum_{k=1..n} a(k) has average order 3 * c * zeta(r-1) * n^r / (5*log(5)), where r = log(5)/log(2) = 2.321928094... and c = Product_{p prime, p>2} (1 + 3/(p^r - p - 3)) = 1.68551448153095... (End)
Extensions
More terms from Michel Marcus, Jun 09 2014