A109624 Totally multiplicative sequence with a(p) = (p-1)*(p+3) = p^2+2p-3 for prime p.
1, 5, 12, 25, 32, 60, 60, 125, 144, 160, 140, 300, 192, 300, 384, 625, 320, 720, 396, 800, 720, 700, 572, 1500, 1024, 960, 1728, 1500, 896, 1920, 1020, 3125, 1680, 1600, 1920, 3600, 1440, 1980, 2304, 4000, 1760, 3600, 1932, 3500, 4608, 2860, 2300, 7500, 3600
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := ((p - 1)*(p + 3))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 05 2022 *)
-
PARI
a(n) = {f = factor(n); return (prod(k=1, #f~, ((f[k, 1]-1)*(f[k, 1]+3))^f[k, 2]));} \\ Michel Marcus, Jun 13 2013
Formula
Multiplicative with a(p^e) = ((p-1)*(p+3))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-1)*(p(k)+3))^e(k).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + 2*p - 4)) = 1.471999388763656342016756485604184156984049961181587531678650682804811302... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 3/p^2 + 1/p^3 + 3/p^4)) = 0.6324191395... . - Amiram Eldar, Nov 05 2022