A166608 Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1, 22, 462, 9702, 203742, 4278582, 89850222, 1886854662, 39623947902, 832102905942, 17474161024782, 366957381520422, 7706105011928631, 161828205250496400, 3398392310260322760, 71366238515464643520
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, -210).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13) )); // G. C. Greubel, Apr 25 2019 -
Mathematica
CoefficientList[Series[(1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13), {x, 0, 20}], x] (* G. C. Greubel, May 18 2016, modified Apr 25 2019 *) coxG[{12,210,-20}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 20 2018 *)
-
PARI
my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13)) \\ G. C. Greubel, Apr 25 2019
-
Sage
((1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
Formula
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^12 - 20*t^11 - 20*t^10 - 20*t^9 -20*t^8 -20*t^7 - 20*t^6 - 20*t^5 - 20*t^4 - 20*t^3 - 20*t^2 -20*t + 1).
G.f.: (1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13). - G. C. Greubel, Apr 25 2019
Comments