A166622 Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1, 32, 992, 30752, 953312, 29552672, 916132832, 28400117792, 880403651552, 27292513198112, 846067909141472, 26228105183385632, 813071260684954096, 25205209081233561600, 781361481518239933440, 24222205927065423175680
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, -465).
Programs
-
Mathematica
CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^12 - 30*t^11 - 30*t^10 - 30*t^9 - 30*t^8 - 30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 19 2016 *) coxG[{12,465,-30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 24 2017 *)
Formula
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^12 - 30*t^11 - 30*t^10 - 30*t^9 -30*t^8 -30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t +1).
Comments