cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166636 Totally multiplicative sequence with a(p) = 6*(p-1) for prime p.

Original entry on oeis.org

1, 6, 12, 36, 24, 72, 36, 216, 144, 144, 60, 432, 72, 216, 288, 1296, 96, 864, 108, 864, 432, 360, 132, 2592, 576, 432, 1728, 1296, 168, 1728, 180, 7776, 720, 576, 864, 5184, 216, 648, 864, 5184, 240, 2592, 252, 2160, 3456, 792, 276, 15552, 1296, 3456
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] :=
    DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*6^(PrimeOmega[m]), {m, 1, 100}] (* G. C. Greubel, May 20 2016 *)
    f[p_, e_] := (6*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)

Formula

Multiplicative with a(p^e) = (6*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (6*(p(k)-1))^e(k).
a(n) = A165827(n) * A003958(n) = 6^bigomega(n) * A003958(n) = 6^A001222(n) * A003958(n).