cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A166962 Triangle T(n,k) read by rows: T(n,1) = T(n,n)=1, otherwise T(n,k) = (3n-3k+1)*T(n-1,k-1) + k*(3k-2)*T(n-1,k), 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 103, 69, 1, 1, 834, 2170, 316, 1, 1, 6685, 53910, 27830, 1329, 1, 1, 53496, 1219015, 1652300, 281195, 5412, 1, 1, 427987, 26455251, 81939195, 34800675, 2487917, 21781, 1, 1, 3423918, 563692024, 3700851816, 3327253410
Offset: 1

Views

Author

Roger L. Bagula and Mats Granvik, Oct 25 2009

Keywords

Comments

Row sums are 1, 2, 14, 174, 3322, 89756, 3211420, 146132808, 8202467544, 554489060200,..
The recursion relation T(n,k) = (m*n - m*k + 1)*T(n - 1, k - 1) + k*(m*k - (m - 1))*T(n - 1, k) connects several sequences for differing values of m. These are: m = 0 yields A008277, m = 1 yields A166960, m = 2 yields A166961, and m = 3 yields this sequence. These sequences are, in essence, a variation of Stirling numbers of the second kind. - G. C. Greubel, May 29 2016

Examples

			1;
1, 1;
1, 12, 1;
1, 103, 69, 1;
1, 834, 2170, 316, 1;
1, 6685, 53910, 27830, 1329, 1;
1, 53496, 1219015, 1652300, 281195, 5412, 1;
1, 427987, 26455251, 81939195, 34800675, 2487917, 21781, 1;
1, 3423918, 563692024, 3700851816, 3327253410, 586846782, 20312292, 87300, 1;
		

Crossrefs

Programs

  • Maple
    A166962 := proc(n,k)
        if k = 1 or k = n then
            1;
        elif n <= 2 then
            1;
        else
            (3*n-3*k+1)*procname(n-1,k-1)+k*(3*k-2)*procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Mar 26 2013
  • Mathematica
    A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := (3*n - 3*k + 1)*A[n - 1, k - 1] + k*(3*k - 2)*A[n - 1, k]; Flatten[Table[A[n, k], {n, 10}, {k, n}]] (* modified by G. C. Greubel, May 29 2016 *)

Formula

T(n, k) = (3*n - 3*k + 1)*T(n - 1, k - 1) + k*(3*k - 2)*T(n - 1, k). - G. C. Greubel, May 29 2016
Showing 1-1 of 1 results.