A166960 Triangle T(n, k) read by rows: T(n, k)= (m*n-m*k+1)*T(n-1, k-1) + k*(m*k-(m-1))*T(n-1, k) where m = 1.
1, 1, 1, 1, 6, 1, 1, 27, 21, 1, 1, 112, 270, 58, 1, 1, 453, 2878, 1738, 141, 1, 1, 1818, 28167, 39320, 8739, 318, 1, 1, 7279, 264411, 769955, 375755, 37665, 685, 1, 1, 29124, 2430652, 13905746, 13243650, 2858960, 146560, 1434, 1, 1, 116505, 22108860
Offset: 1
Examples
Triangle starts: {1}, {1, 1}, {1, 6, 1}, {1, 27, 21, 1}, {1, 112, 270, 58, 1}, {1, 453, 2878, 1738, 141, 1}, {1, 1818, 28167, 39320, 8739, 318, 1}, {1, 7279, 264411, 769955, 375755, 37665, 685, 1}, {1, 29124, 2430652, 13905746, 13243650, 2858960, 146560, 1434, 1}, {1, 116505, 22108860, 239506500, 414525726, 169140810, 18617280, 531456, 2949, 1} ...
Links
- G. C. Greubel, Table of n, a(n) for the first 25 rows
Programs
-
Mathematica
A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := (n - k + 1)*A[n - 1, k - 1] + k^2*A[n - 1, k]; Flatten[Table[A[n, k], {n, 10}, {k, n}]] (* modified by G. C. Greubel, May 29 2016 *) T[ n_, k_] := Which[k < 1 || k > n, 0, 1 == k == n, 1, True, T[n, k] = k^2 T[n - 1, k] + (n - k + 1) T[n - 1, k - 1]]; (* Michael Somos, Apr 12 2019 *)
Formula
T(n, k) = (n-k+1)*T(n-1, k-1) + k^2*T(n-1, k).
Comments