A166738 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1, 45, 1980, 87120, 3833280, 168664320, 7421230080, 326534123520, 14367501434880, 632170063134720, 27815482777927680, 1223881242228817920, 53850774658067987490, 2369434084954991406000, 104255099738019619948350
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, -946).
Programs
-
Mathematica
coxG[{12,946,-43}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 16 2016 *) CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^12 - 43*t^11 - 43*t^10 - 43*t^9 - 43*t^8 - 43*t^7 - 43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 24 2016 *)
Formula
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^12 - 43*t^11 - 43*t^10 - 43*t^9 -43*t^8 -43*t^7 -43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1).
Comments