cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166748 E.g.f.: exp(6*arcsin(x)).

Original entry on oeis.org

1, 6, 36, 222, 1440, 9990, 74880, 609390, 5391360, 51798150, 539136000, 6060383550, 73322496000, 951480217350, 13198049280000, 195053444556750, 3061947432960000, 50908949029311750, 894088650424320000
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 21 2009

Keywords

Comments

exp(6*arcsin(1/2)) is Aleksandr Gelfond's constant exp(Pi).

Crossrefs

Programs

  • Mathematica
    Round[Table[3*2^(n-1)*(E^(3*Pi)-(-1)^n*E^(-3*Pi))*Abs[Gamma[n/2+3*I]]^2/Pi,{n,0,20}]] (* Vaclav Kotesovec, Nov 06 2014 *)
    CoefficientList[Series[Exp[6*ArcSin[x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Nov 06 2014 *)
  • PARI
    A166748(n)=round(norm(gamma(n/2+3*I))/Pi*if(n%2,cosh(3*Pi),sinh(3*Pi))*3<M. F. Hasler, Oct 25 2009
    
  • PARI
    a(n)=polcoeff(exp(6*asin(x)),n)*n!
    
  • PARI
    a(n)=(1+5*(n%2))*prod(k=0,n\2-1,(2*k+n%2)^2+36) \\ Jaume Oliver Lafont, Oct 28 2009

Formula

Contribution from Alexander R. Povolotsky, Oct 24 2009: (Start)
a(n+2) = (n^2+36)*a(n), a(0)=1, a(1)=6.
The above recurrence leads to
a(n) = (3*2^n*gamma(-3*i+n/2)*gamma(3*i+n/2)*(cos((n*Pi)/2)+i*sin((n*Pi)/2))*sinh(((6-i*n)*Pi)/2))/Pi where "i" is imaginary unit. (End)
a(n) = 3*2^(n-1)*(exp(3*Pi)-(-1)^n*exp(-3*Pi))*|Gamma(n/2+3i)|^2/Pi. - R. J. Mathar and M. F. Hasler, Oct 25 2009
a(n) ~ 6 * (exp(3*Pi) - (-1)^n*exp(-3*Pi)) * n^(n-1) / exp(n). - Vaclav Kotesovec, Nov 06 2014

Extensions

Minor edits by Vaclav Kotesovec, Nov 06 2014