cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166911 a(n) = (9 + 14*n + 12*n^2 + 4*n^3)/3.

Original entry on oeis.org

3, 13, 39, 89, 171, 293, 463, 689, 979, 1341, 1783, 2313, 2939, 3669, 4511, 5473, 6563, 7789, 9159, 10681, 12363, 14213, 16239, 18449, 20851, 23453, 26263, 29289, 32539, 36021, 39743, 43713, 47939, 52429, 57191, 62233, 67563, 73189, 79119, 85361, 91923
Offset: 0

Views

Author

Paul Curtz, Oct 23 2009

Keywords

Comments

The inverse binomial transform yields the quasi-finite sequence 3,10,16,8,0,.. (0 continued).
These are the bottom-left numbers in the blocks (each with 2 rows) shown in A172002, the
atomic number of the leftmost element in the 2nd, 4th, 6th etc. row of the Janet table.

References

  • Charles Janet, La structure du noyau de l'atome .., Nov 1927, page 15.

Programs

Formula

First differences: a(n)-a(n-1) = 2+4*n+4*n^2 = 1+(1+2n)^2 = 1 + A016754(n+1) = A069894(n+1).
Second differences: a(n) - 2*a(n-1) + a(n-2) = 8*n = A008590(n+2).
Third differences: a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 8.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (3 + x + 5*x^2 - x^3)/(1-x)^4.
a(n) = A166464(n) + 2*(n+1)^2 = A166464(n) + A001105(n+1).
E.g.f.: (1/3)*(9 + 30*x + 24*x^2 + 4*x^3)*exp(x). - G. C. Greubel, May 28 2016

Extensions

Edited and extended by R. J. Mathar, Mar 02 2010