A166911 a(n) = (9 + 14*n + 12*n^2 + 4*n^3)/3.
3, 13, 39, 89, 171, 293, 463, 689, 979, 1341, 1783, 2313, 2939, 3669, 4511, 5473, 6563, 7789, 9159, 10681, 12363, 14213, 16239, 18449, 20851, 23453, 26263, 29289, 32539, 36021, 39743, 43713, 47939, 52429, 57191, 62233, 67563, 73189, 79119, 85361, 91923
Offset: 0
References
- Charles Janet, La structure du noyau de l'atome .., Nov 1927, page 15.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(9+14*n+12*n^2+4*n^3)/3: n in [0..40] ]; // Vincenzo Librandi, Aug 06 2011
-
Mathematica
LinearRecurrence[{4,-6,4,-1}, {3, 13, 39, 89}, 100] (* G. C. Greubel, May 28 2016 *)
-
PARI
a(n)=n*(4*n^2+12*n+14)/3+3 \\ Charles R Greathouse IV, Dec 21 2011
Formula
Second differences: a(n) - 2*a(n-1) + a(n-2) = 8*n = A008590(n+2).
Third differences: a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 8.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (3 + x + 5*x^2 - x^3)/(1-x)^4.
E.g.f.: (1/3)*(9 + 30*x + 24*x^2 + 4*x^3)*exp(x). - G. C. Greubel, May 28 2016
Extensions
Edited and extended by R. J. Mathar, Mar 02 2010
Comments