cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166931 Numbers n with property that n mod k is k-1 for all k = 2..9.

Original entry on oeis.org

2519, 5039, 7559, 10079, 12599, 15119, 17639, 20159, 22679, 25199, 27719, 30239, 32759, 35279, 37799, 40319, 42839, 45359, 47879, 50399, 52919, 55439, 57959, 60479, 62999, 65519, 68039, 70559, 73079, 75599, 78119, 80639, 83159, 85679
Offset: 1

Views

Author

Luc Comeau-Montasse, Oct 23 2009

Keywords

Programs

  • Maple
    isA166931 := proc(n) for k from 2 to 9 do if n mod k <> k-1 then return false; end if; end do; true; end proc: for n from 1 to 500000 do if isA166931(n) then printf("%d,",n) ; end if; end do ; # R. J. Mathar, Nov 02 2009
  • Mathematica
    Select[Range[90000],And@@Table[Mod[#,k]==k-1,{k,2,9}]&] (* Harvey P. Dale, Jun 14 2011 *)
    LinearRecurrence[{2, -1}, {2519, 5039}, 50] (* G. C. Greubel, May 28 2016 *)

Formula

a(n) = 2519 + n*2520.
From G. C. Greubel, May 28 2016: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (2519 + x)/(1-x)^2.
E.g.f.: (2519 + 2520*x)*exp(x). (End)

Extensions

Edited by N. J. A. Sloane, Oct 25 2009