cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166957 a(n) = 841*n^3 + 261*n^2 + 28*n + 1.

Original entry on oeis.org

1, 1131, 7829, 25141, 58113, 111791, 191221, 301449, 447521, 634483, 867381, 1151261, 1491169, 1892151, 2359253, 2897521, 3512001, 4207739, 4989781, 5863173, 6832961, 7904191, 9081909, 10371161, 11776993, 13304451
Offset: 0

Views

Author

A.K. Devaraj, Oct 25 2009

Keywords

Comments

Polynomials in one variable have a certain property viz f(x+f(x)) == 0 (mod f(x)). This is true even when the polynomial is in two variables (not necessarily homogeneous). This sequence is a demonstration when the polynomial is x^3 + 2*x*y + y^2 (x = 2, y=3).
When x = 2 and y=3, f(x,y) = 29. Hence f((2 + 29), (3 + 29))/29 = 1131.

Crossrefs

Programs

  • GAP
    List([0..40], n-> 1 +28*n +261*n^2 +841*n^3); # G. C. Greubel, Sep 02 2019
  • Magma
    I:=[1131, 7829, 25141, 58113]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 01 2012
    
  • Magma
    [1 +28*n +261*n^2 +841*n^3: n in [0..40]]; // G. C. Greubel, Sep 02 2019
    
  • Maple
    seq(1 +28*n +261*n^2 +841*n^3, n=0..40); # G. C. Greubel, Sep 02 2019
  • Mathematica
    CoefficientList[Series[(1131+3305*x+611*x^2-x^3)/(x-1)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 01 2012 *)
    Table[841n^3+261n^2+28n+1,{n,30}] (* or *) LinearRecurrence[{4,-6,4,-1},{1131,7829,25141,58113},30] (* Harvey P. Dale, Apr 11 2013 *)
  • PARI
    a(n) = ((2+n*29)^3 + 2*(2+n*29)*(3+n*29) + (3+n*29)^2)/29
    
  • Sage
    [1 +28*n +261*n^2 +841*n^3 for n in (0..40)] # G. C. Greubel, Sep 02 2019
    

Formula

a(n) = 841*n^3 + 261*n^2 + 28*n + 1.
G.f.: x*(1131 + 3305*x + 611*x^2 - x^3)/(1-x)^4 . - R. J. Mathar, Sep 02 2011
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jul 01 2012
E.g.f.: (1 + 1130*x + 2784*x^2 + 841*x^3)*exp(x). - G. C. Greubel, Apr 09 2016

Extensions

Formula, description, editing, and program correction by Charles R Greathouse IV, Nov 04 2009
a(0)=1 added by N. J. A. Sloane, Apr 09 2016