A166973 Triangle T(n,k) read by rows: T(n, k) = (m*n - m*k + 1)*T(n - 1, k - 1) + (5*k - 4)*(m*k - (m - 1))*T(n - 1, k) where m = 0.
1, 1, 1, 1, 7, 1, 1, 43, 18, 1, 1, 259, 241, 34, 1, 1, 1555, 2910, 785, 55, 1, 1, 9331, 33565, 15470, 1940, 81, 1, 1, 55987, 378546, 281085, 56210, 4046, 112, 1, 1, 335923, 4219993, 4875906, 1461495, 161406, 7518, 148, 1, 1, 2015539, 46755846, 82234489
Offset: 1
Examples
Triangle T(n, k) starts: n\k 1 2 3 4 5 6 7 8 9 10 ... 1: 1 2: 1 1 3: 1 7 1 4: 1 43 18 1 5: 1 259 241 34 1 6: 1 1555 2910 785 55 1 7: 1 9331 33565 15470 1940 81 1 8: 1 55987 378546 281085 56210 4046 112 1 9: 1 335923 4219993 4875906 1461495 161406 7518 148 1 10: 1 2015539 46755846 82234489 35567301 5658051 394464 12846 189 1 ... Reformatted, - _Wolfdieter Lang_, Aug 13 2017
Links
- G. C. Greubel, Table of n, a(n) for the first 25 rows
Crossrefs
Cf. A111577.
S2[4,1] = A111578 (with offsets 0), S2[3,1] = A111577 (with offsets 0), S2[2,1] = A039755. - Wolfdieter Lang, Aug 13 2017
Programs
-
Mathematica
A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := A[n - 1, k - 1] + (5*k - 4)*A[n - 1,k]; Flatten[ Table[A[n, k], {n, 10}, {k, n}]] (* modified by G. C. Greubel, May 29 2016 *)
Formula
T(n, k) = T(n - 1, k - 1) + (5*k - 4)*T(n - 1, k).
E.g.f. column k: int(exp(x)*((exp(5*x)-1)/5)^(k-1)/(k-1)!, x) + (-1)^k/A008548(k). - Wolfdieter Lang, Aug 13 2017
Comments