cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A166990 G.f.: A(x) = exp( Sum_{n>=1} A000172(n)*x^n/n ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.

Original entry on oeis.org

1, 2, 7, 30, 147, 786, 4472, 26644, 164477, 1044258, 6782484, 44887236, 301782361, 2056250570, 14172792355, 98667874038, 692948001906, 4904403499992, 34951124337300, 250617829087656, 1807055528439771, 13095146839953030
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Comments

Analogous to the square of the g.f. of Catalan numbers (A000108):
C(x)^2 = exp( Sum_{n>=1} A000984(n)*x^n/n ) where central binomial coefficient A000984(n) = Sum_{k=0..n} C(n,k)^2.

Examples

			G.f.: A(x) = 1 + 2*x + 7*x^2 + 30*x^3 + 147*x^4 + 786*x^5 + 4472*x^6 +...
log(A(x)) = 2*x + 10*x^2/2 + 56*x^3/3 + 346*x^4/4 + 2252*x^5/5 + 15184*x^6/6 + 104960*x^7/7 +...+ A000172(n)*x^n/n +...
		

Crossrefs

Cf. A000172 (Franel numbers), A166991, A166992, A218117, A218119.

Programs

  • Mathematica
    a[n_] := Sum[(Binomial[n, k])^3, {k, 0, n}]; f[x_] := Sum[a[n]*x^n/n, {n, 1, 75}]; CoefficientList[Series[Exp[f[x]], {x, 0, 50}], x] (* G. C. Greubel, May 30 2016 *)
    nmax = 30; Clear[a]; franel = RecurrenceTable[{n^2*a[n] == (7*n^2 - 7*n + 2)*a[n-1] + 8*(n-1)^2*a[n-2], a[1] == 2, a[2] == 10}, a, {n, 1, nmax}]; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[franel[[k]]*a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 27 2024 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sum(k=0,m,binomial(m,k)^3)*x^m/m)+x*O(x^n)),n)}

Formula

Self-convolution of A166991.
a(n) ~ c * 8^n / n^2, where c = 0.58462945... - Vaclav Kotesovec, Nov 27 2017, updated Oct 29 2024

A181144 G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4*y^k] * x^n/n ) = Sum_{n>=0,k=0..n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 36, 36, 1, 1, 100, 419, 100, 1, 1, 225, 2699, 2699, 225, 1, 1, 441, 12138, 35052, 12138, 441, 1, 1, 784, 42865, 286206, 286206, 42865, 784, 1, 1, 1296, 127191, 1696820, 3932898, 1696820, 127191, 1296, 1, 1, 2025, 330903, 7958563
Offset: 0

Views

Author

Paul D. Hanna, Oct 13 2010

Keywords

Comments

Compare g.f. to that of the following triangle variants:
* Pascal's: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)*y^k] * x^n/n );
* Narayana: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n );
* A181143: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3*y^k] * x^n/n );
* A218115: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^5*y^k] * x^n/n );
* A218116: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^6*y^k] * x^n/n ).

Examples

			G.f.: A(x,y) = 1 + (1+y)*x + (1+9*y+y^2)*x^2 + (1+36*y+36*y^2+y^3)*x^3 + (1+100*y+419*y^2+100*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2^4*y + y^2)*x^2/2
+ (1 + 3^4*y + 3^4*y^2 + y^3)*x^3/3
+ (1 + 4^4*y + 6^4*y^2 + 4^4*y^3 + y^4)*x^4/4
+ (1 + 5^4*y + 10^4*y^2 + 10^4*y^3 + 5^4*y^4 + y^5)*x^5/5 +...
Triangle begins:
1;
1, 1;
1, 9, 1;
1, 36, 36, 1;
1, 100, 419, 100, 1;
1, 225, 2699, 2699, 225, 1;
1, 441, 12138, 35052, 12138, 441, 1;
1, 784, 42865, 286206, 286206, 42865, 784, 1;
1, 1296, 127191, 1696820, 3932898, 1696820, 127191, 1296, 1;
1, 2025, 330903, 7958563, 36955542, 36955542, 7958563, 330903, 2025, 1;
1, 3025, 776688, 31205941, 261852055, 525079969, 261852055, 31205941, 776688, 3025, 1; ...
Note that column 1 forms the sum of cubes (A000537), and forms the squares of the triangular numbers.
Inverse binomial transform of columns begins:
[1];
[1, 8, 19, 18, 6];
[1, 35, 348, 1549, 3713, 5154, 4161, 1818, 333];
[1, 99, 2500, 27254, 161793, 589819, 1409579, 2282850, 2529900, 1893972, 917349, 259854, 32726]; ...
		

Crossrefs

Cf. A000537 (column 1), A166992 (row sums), A166898 (antidiagonal sums), A218140.
Cf. variants: A001263 (Narayana), A181143, A218115, A218116.

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,m,binomial(m,j)^4*y^j)*x^m/m)+O(x^(n+1))),n,x),k,y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A166993 G.f.: A(x) = exp( Sum_{n>=1} A005260(n)*x^n/(2*n) ), where A005260(n) = Sum_{k=0..n} C(n,k)^4.

Original entry on oeis.org

1, 1, 5, 32, 266, 2499, 25765, 283084, 3264502, 39077898, 481942608, 6089941550, 78523226064, 1029859481949, 13704960309415, 184688556173542, 2516342539576510, 34617557176739174, 480336524752492608
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 32*x^3 + 266*x^4 + 2499*x^5 + 25765*x^6 +...
log(A(x)) = x + 9*x^2/2 + 82*x^3/3 + 905*x^4/4 + 10626*x^5/5 + 131922*x^6/6 + 1697508*x^7/7 +...+ A005260(n)/2*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(Binomial[n, k])^4, {k, 0, n}]; f[x_] := Sum[a[n]*x^n/(2*n), {n, 1, 75}]; CoefficientList[Series[Exp[f[x]], {x, 0, 50}], x] (* G. C. Greubel, May 30 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sum(k=0,m,binomial(m,k)^4)/2*x^m/m)+x*O(x^n)),n)}

Formula

Self-convolution yields A166992.
a(n) ~ c * 16^n / n^(5/2), where c = 0.14011467789446087641913961305130549385534145578464604013551918158... - Vaclav Kotesovec, Nov 27 2017

A218117 G.f.: A(x) = exp( Sum_{n>=1} A005261(n)*x^n/n ) where A005261(n) = Sum_{k=0..n} C(n,k)^5.

Original entry on oeis.org

1, 2, 19, 198, 2961, 49566, 938322, 19083624, 412160478, 9305822076, 217855152321, 5251363667622, 129704365956114, 3269927116717728, 83893626609970281, 2185188966488265718, 57673989852987800966, 1539973309401567102832, 41544812360973818992909
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Comments

Compare to a g.f. of Catalan numbers (A000108):
exp( Sum_{n>=1} A000984(n)*x^n/n ) where A000984(n) = Sum_{k=0..n} C(n,k)^2.

Examples

			G.f.: A(x) = 1 + 2*x + 19*x^2 + 198*x^3 + 2961*x^4 + 49566*x^5 + 938322*x^6 +...
log(A(x)) = 2*x + 34*x^2/2 + 488*x^3/3 + 9826*x^4/4 + 206252*x^5/5 + 4734304*x^6/6 + 113245568*x^7/7 +...+ A005261(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^5)*x^m/m)+x*O(x^n)), n)}
    for(n=0,25,print1(a(n),", "))

Formula

Equals row sums of triangle A218115.
Self-convolution of A218118.

A218119 G.f.: A(x) = exp( Sum_{n>=1} A069865(n)*x^n/n ) where A069865(n) = Sum_{k=0..n} C(n,k)^6.

Original entry on oeis.org

1, 2, 35, 554, 15297, 451842, 15929824, 601077640, 24488754772, 1046792248856, 46718718597567, 2155032002133834, 102259392504591235, 4967499746642163574, 246231868462969357492, 12419324761881256326288, 635990044563649443993091, 33006906229799699591298070
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Comments

Compare to a g.f. of Catalan numbers (A000108):
exp( Sum_{n>=1} A000984(n)*x^n/n ) where A000984(n) = Sum_{k=0..n} C(n,k)^2.

Examples

			G.f.: A(x) = 1 + 2*x + 35*x^2 + 554*x^3 + 15297*x^4 + 451842*x^5 + 15929824*x^6 +...
log(A(x)) = 2*x + 66*x^2/2 + 1460*x^3/3 + 54850*x^4/4 + 2031252*x^5/5 + 86874564*x^6/6 + 3848298792*x^7/7 +...+ A069865(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^6)*x^m/m)+x*O(x^n)), n)}
    for(n=0,25,print1(a(n),", "))

Formula

Equals row sums of triangle A218116.
Self-convolution of A218120.
Showing 1-5 of 5 results.