A166990
G.f.: A(x) = exp( Sum_{n>=1} A000172(n)*x^n/n ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.
Original entry on oeis.org
1, 2, 7, 30, 147, 786, 4472, 26644, 164477, 1044258, 6782484, 44887236, 301782361, 2056250570, 14172792355, 98667874038, 692948001906, 4904403499992, 34951124337300, 250617829087656, 1807055528439771, 13095146839953030
Offset: 0
G.f.: A(x) = 1 + 2*x + 7*x^2 + 30*x^3 + 147*x^4 + 786*x^5 + 4472*x^6 +...
log(A(x)) = 2*x + 10*x^2/2 + 56*x^3/3 + 346*x^4/4 + 2252*x^5/5 + 15184*x^6/6 + 104960*x^7/7 +...+ A000172(n)*x^n/n +...
-
a[n_] := Sum[(Binomial[n, k])^3, {k, 0, n}]; f[x_] := Sum[a[n]*x^n/n, {n, 1, 75}]; CoefficientList[Series[Exp[f[x]], {x, 0, 50}], x] (* G. C. Greubel, May 30 2016 *)
nmax = 30; Clear[a]; franel = RecurrenceTable[{n^2*a[n] == (7*n^2 - 7*n + 2)*a[n-1] + 8*(n-1)^2*a[n-2], a[1] == 2, a[2] == 10}, a, {n, 1, nmax}]; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[franel[[k]]*a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 27 2024 *)
-
{a(n)=polcoeff(exp(sum(m=1,n,sum(k=0,m,binomial(m,k)^3)*x^m/m)+x*O(x^n)),n)}
A218115
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^5 * y^k] * x^n/n ) = Sum_{n>=0,k=0..n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 98, 98, 1, 1, 354, 2251, 354, 1, 1, 979, 23803, 23803, 979, 1, 1, 2275, 158367, 617036, 158367, 2275, 1, 1, 4676, 773842, 8763293, 8763293, 773842, 4676, 1, 1, 8772, 3031668, 82498785, 241082026, 82498785, 3031668, 8772, 1, 1, 15333
Offset: 0
G.f.: A(x,y) = 1 + (1+y)*x + (1+17*y+y^2)*x^2 + (1+98*y+98*y^2+y^3)*x^3 + (1+354*y+2251*y^2+354*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2^5*y + y^2)*x^2/2
+ (1 + 3^5*y + 3^5*y^2 + y^3)*x^3/3
+ (1 + 4^5*y + 6^5*y^2 + 4^5*y^3 + y^4)*x^4/4
+ (1 + 5^5*y + 10^5*y^2 + 10^5*y^3 + 5^5*y^4 + y^5)*x^5/5 +...
Triangle begins:
1;
1, 1;
1, 17, 1;
1, 98, 98, 1;
1, 354, 2251, 354, 1;
1, 979, 23803, 23803, 979, 1;
1, 2275, 158367, 617036, 158367, 2275, 1;
1, 4676, 773842, 8763293, 8763293, 773842, 4676, 1;
1, 8772, 3031668, 82498785, 241082026, 82498785, 3031668, 8772, 1;
1, 15333, 10057620, 575963523, 4066874561, 4066874561, 575963523, 10057620, 15333, 1; ...
Note that column 1 forms the sum of fourth powers (A000538).
-
{T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^5*y^j)*x^m/m)+O(x^(n+1))), n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
A218119
G.f.: A(x) = exp( Sum_{n>=1} A069865(n)*x^n/n ) where A069865(n) = Sum_{k=0..n} C(n,k)^6.
Original entry on oeis.org
1, 2, 35, 554, 15297, 451842, 15929824, 601077640, 24488754772, 1046792248856, 46718718597567, 2155032002133834, 102259392504591235, 4967499746642163574, 246231868462969357492, 12419324761881256326288, 635990044563649443993091, 33006906229799699591298070
Offset: 0
G.f.: A(x) = 1 + 2*x + 35*x^2 + 554*x^3 + 15297*x^4 + 451842*x^5 + 15929824*x^6 +...
log(A(x)) = 2*x + 66*x^2/2 + 1460*x^3/3 + 54850*x^4/4 + 2031252*x^5/5 + 86874564*x^6/6 + 3848298792*x^7/7 +...+ A069865(n)*x^n/n +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^6)*x^m/m)+x*O(x^n)), n)}
for(n=0,25,print1(a(n),", "))
A218118
G.f.: A(x) = exp( Sum_{n>=1} A005261(n)/2*x^n/n ) where A005261(n) = Sum_{k=0..n} C(n,k)^5.
Original entry on oeis.org
1, 1, 9, 90, 1350, 22623, 430338, 8786367, 190473510, 4314088755, 101271596421, 2446843690671, 60557118315384, 1529356193511525, 39297344717526330, 1024958399339092751, 27083985050402731646, 723942169622258974974, 19548657715769940178730
Offset: 0
G.f.: A(x) = 1 + x + 9*x^2 + 90*x^3 + 1350*x^4 + 22623*x^5 + 430338*x^6 +...
log(A(x)) = x + 17*x^2/2 + 244*x^3/3 + 4913*x^4/4 + 103126*x^5/5 + 2367152*x^6/6 + 56622784*x^7/7 +...+ A005261(n)/2*x^n/n +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^5)/2*x^m/m)+x*O(x^n)), n)}
for(n=0,25,print1(a(n),", "))
Showing 1-4 of 4 results.
Comments