cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166991 G.f.: A(x) = exp( Sum_{n>=1} A000172(n)*x^n/(2*n) ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.

Original entry on oeis.org

1, 1, 3, 12, 57, 300, 1693, 10045, 61890, 392688, 2550843, 16891566, 113660475, 775223595, 5349057132, 37280705406, 262119009927, 1857241951359, 13250054817027, 95110710932424, 686490953423700, 4979704242810870
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 57*x^4 + 300*x^5 + 1693*x^6 +...
log(A(x)^2) = 2*x + 10*x^2/2 + 56*x^3/3 + 346*x^4/4 + 2252*x^5/5 + 15184*x^6/6 + 104960*x^7/7 +...+ A000172(n)*x^n/n +...
		

Crossrefs

Cf. A000172 (Franel numbers), A166990, A166993, A218118, A218120.

Programs

  • Mathematica
    a[n_] := Sum[(Binomial[n, k])^3, {k, 0, n}]; f[x_] := Sum[a[n]*x^n/(2*n), {n, 1, 75}]; CoefficientList[Series[Exp[f[x]], {x, 0, 50}], x] (* G. C. Greubel, May 30 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sum(k=0,m,binomial(m,k)^3)/2*x^m/m)+x*O(x^n)),n)}

Formula

Self-convolution yields A166990.
a(n) ~ c * 8^n / n^2, where c = 0.231776... - Vaclav Kotesovec, Nov 27 2017

A218117 G.f.: A(x) = exp( Sum_{n>=1} A005261(n)*x^n/n ) where A005261(n) = Sum_{k=0..n} C(n,k)^5.

Original entry on oeis.org

1, 2, 19, 198, 2961, 49566, 938322, 19083624, 412160478, 9305822076, 217855152321, 5251363667622, 129704365956114, 3269927116717728, 83893626609970281, 2185188966488265718, 57673989852987800966, 1539973309401567102832, 41544812360973818992909
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Comments

Compare to a g.f. of Catalan numbers (A000108):
exp( Sum_{n>=1} A000984(n)*x^n/n ) where A000984(n) = Sum_{k=0..n} C(n,k)^2.

Examples

			G.f.: A(x) = 1 + 2*x + 19*x^2 + 198*x^3 + 2961*x^4 + 49566*x^5 + 938322*x^6 +...
log(A(x)) = 2*x + 34*x^2/2 + 488*x^3/3 + 9826*x^4/4 + 206252*x^5/5 + 4734304*x^6/6 + 113245568*x^7/7 +...+ A005261(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^5)*x^m/m)+x*O(x^n)), n)}
    for(n=0,25,print1(a(n),", "))

Formula

Equals row sums of triangle A218115.
Self-convolution of A218118.

A218120 G.f.: A(x) = exp( Sum_{n>=1} A069865(n)/2*x^n/n ) where A069865(n) = Sum_{k=0..n} C(n,k)^6.

Original entry on oeis.org

1, 1, 17, 260, 7244, 214257, 7593707, 287419304, 11745920475, 503237634257, 22503750152879, 1039694201489294, 49401095274561608, 2402478324494963930, 119201977436336120482, 6017223412990713126034, 308361587173800754305214, 16013543997544827365960598
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Comments

Compare to a g.f. of Catalan numbers (A000108):
exp( Sum_{n>=1} A000984(n)/2*x^n/n ) where A000984(n) = Sum_{k=0..n} C(n,k)^2.

Examples

			G.f.: A(x) = 1 + x + 17*x^2 + 260*x^3 + 7244*x^4 + 214257*x^5 + 7593707*x^6 +...
log(A(x)) = x + 33*x^2/2 + 730*x^3/3 + 27425*x^4/4 + 1015626*x^5/5 + 43437282*x^6/6 + 1924149396*x^7/7 +...+ A069865(n)/2*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^6)/2*x^m/m)+x*O(x^n)), n)}
    for(n=0,25,print1(a(n),", "))

Formula

Self-convolution equals A218119.
Showing 1-3 of 3 results.