A167024 Triangle read by rows: T(n, m) = binomial(n, m)* Sum_{k=0..m} binomial(n, k) for 0 <= m <= n.
1, 1, 2, 1, 6, 4, 1, 12, 21, 8, 1, 20, 66, 60, 16, 1, 30, 160, 260, 155, 32, 1, 42, 330, 840, 855, 378, 64, 1, 56, 609, 2240, 3465, 2520, 889, 128, 1, 72, 1036, 5208, 11410, 12264, 6916, 2040, 256, 1, 90, 1656, 10920, 32256, 48132, 39144, 18072, 4599, 512
Offset: 0
Examples
1, 1, 2, 1, 6, 4, 1, 12, 21, 8, 1, 20, 66, 60, 16, 1, 30, 160, 260, 155, 32, 1, 42, 330, 840, 855, 378, 64, 1, 56, 609, 2240, 3465, 2520, 889, 128, 1, 72, 1036, 5208, 11410, 12264, 6916, 2040, 256, 1, 90, 1656, 10920, 32256, 48132, 39144, 18072, 4599, 512, 1, 110, 2520, 21120, 81060, 160776, 178080, 116160, 45585, 10230, 1024
Links
- Muniru A Asiru, Rows n=0..100 of triangle, flattened
Programs
-
GAP
t:=Flat(List([0..10],n->List([0..n],m->Binomial(n,m)*Sum([0..m],k->Binomial(n,k)))));; Print(t); # Muniru A Asiru, Dec 28 2018
-
Maple
T:=(n, m)-> binomial(n, m)*add(binomial(n, k), k=0..m): seq(seq(T(n, m), m=0..n), n=0..9); # Muniru A Asiru, Dec 28 2018
-
Mathematica
T[m_, n_] = If[m == 0 && n == 0, 1, Sum[Binomial[m, n]*Binomial[m, k], {k, 0, n}]] Flatten[Table[Table[T[m, n], {n, 0, m}], {m, 0, 10}]] T[n_,k_] := Binomial[n, k] (2^n - Binomial[n, k + 1] Hypergeometric2F1[1, 1 -n + k, k + 2, -1]); Table[T[n,k], {n,0,8}, {k,0,n}] // Flatten (* Peter Luschny, Dec 28 2018 *)
Formula
T(n, m) = binomial(n,m)*A008949(n,m). [Nov 03 2009]
G.f.: (1/x)*d(arctanh(N(x,y)))/dy, where N(x,y) is g.f. of Narayana numbers (A001263). - Vladimir Kruchinin, Apr 11 2018
T(n, k) = binomial(n, k)*(2^n - binomial(n, 1+k)*hypergeom([1, 1+k-n], [k+2], -1)). - Peter Luschny, Dec 28 2018
Extensions
Introduced OEIS notational standards in the definition - The Assoc. Editors of the OEIS, Nov 05 2009
Comments