A167121 a(n) = 20*a(n-1) - 64*a(n-2) + 2 for n > 2; a(0) = 1, a(1) = 22, a(2) = 377.
1, 22, 377, 6134, 98554, 1578506, 25262666, 404228938, 6467768138, 103484710730, 1655757053770, 26492119588682, 423873940332362, 6781983152971594, 108511730878160714, 1736187695773032266, 27779003139258359626
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (21,-84,64).
Programs
-
Magma
[ n le 2 select 21*n-20 else n eq 3 select 377 else 20*Self(n-1)-64*Self(n-2)+2: n in [1..17] ];
-
Mathematica
CoefficientList[Series[(1 + x - x^2 + x^3)/((1-x)*(1-4*x)*(1-16*x)), {x, 0, 10}], x] (* G. C. Greubel, Jun 04 2016 *) Join[{1},RecurrenceTable[{a[1]==22,a[2]==377,a[n]==20a[n-1]-64a[n-2]+2}, a,{n,20}]] (* Harvey P. Dale, Apr 01 2019 *)
Formula
a(n) = (4337*16^n - 1540*4^n + 128)/2880, for n > 0.
G.f.: (1 + x - x^2 + x^3)/((1-x)*(1-4*x)*(1-16*x)).
E.g.f.: (1/2880)*(-45 + 128*exp(x) - 1540*exp(4*x) + 4337*exp(16*x)). - G. C. Greubel, Jun 04 2016
Comments