cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167137 E.g.f.: P(exp(x)-1) where P(x) is the g.f. of the partition numbers (A000041).

Original entry on oeis.org

1, 1, 5, 31, 257, 2551, 30065, 407191, 6214577, 105530071, 1972879025, 40213910551, 886979957297, 21044674731991, 534313527291185, 14448883517785111, 414475305054698417, 12568507978358276311, 401658204472560090545, 13490011548122407566871, 474964861088609044357937, 17491333169997896126211031
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2009

Keywords

Comments

CONJECTURE: Sum_{n>=0} a(n)^m * log(1+x)^n/n! is an integer series in x for all integer m>0; see A167138 and A167139 for examples.
From Peter Bala, Jul 07 2022: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 16 we obtain the sequence [1, 1, 5, 15, 1, 7, 1, 7, 1, 7, ...], with an apparent period of 2 beginning at a(4).
More generally, we conjecture that the same property holds for integer sequences having an e.g.f. of the form G(exp(x) - 1), where G(x) is an integral power series. (End)

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 31*x^3/3! + 257*x^4/4! +...
A(log(1+x)) = P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsP[k]*StirlingS2[n, k]*k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 21 2018 *)
    nmax = 20; CoefficientList[Series[1/QPochhammer[E^x - 1], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 22 2021 *)
  • PARI
    {a(n)=if(n==0,1,n!*polcoeff(exp(sum(m=1,n,sigma(m)*(exp(x+x*O(x^n))-1)^m/m) ),n))}
    
  • PARI
    {Stirling2(n, k)=if(k<0||k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
    {a(n)=sum(k=0,n,numbpart(k)*Stirling2(n, k)*k!)}
    
  • PARI
    x='x+O('x^66); Vec( serlaplace( 1/eta(exp(x)-1) ) ) \\ Joerg Arndt, Sep 18 2013

Formula

a(n) = Sum_{k=0..n} A000041(k)*Stirling2(n,k)*k! where A000041 is the partition numbers.
E.g.f.: exp( Sum_{n>=1} sigma(n)*[exp(x)-1]^n/n ).
Sum_{n>=0} a(n) * log(1+x)^n/n! = g.f. of the partition numbers (A000041).
Sum_{n>=0} a(n)^2*log(1+x)^n/n! = g.f. of A167138.
From Peter Bala, Sep 18 2013: (Start)
Sum {n >= 0} (-1)^n*a(n)*(log(1 - x))^n/n! = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + ... is the o.g.f. of A218482.
a(n) is always odd. Congruences for n >= 1: a(2*n) = 2 (mod 3); a(4*n) = 2 (mod 5); a(6*n) = 0 (mod 7); a(10*n) = 7 (mod 11); a(12*n) = 5 (mod 13); a(16*n) = 0 (mod 17). (End)
From Vaclav Kotesovec, Jun 17 2018: (Start)
a(n) ~ n! * exp((1/log(2) - 1) * Pi^2 / 24 + Pi*sqrt(n/(3*log(2)))) / (4 * sqrt(3) * n * (log(2))^n).
a(n) ~ sqrt(Pi) * exp((1/log(2) - 1) * Pi^2 / 24 + Pi*sqrt(n/(3*log(2))) - n) * n^(n + 1/2) / (2^(3/2) * sqrt(3) * n * (log(2))^n). (End)