A167137 E.g.f.: P(exp(x)-1) where P(x) is the g.f. of the partition numbers (A000041).
1, 1, 5, 31, 257, 2551, 30065, 407191, 6214577, 105530071, 1972879025, 40213910551, 886979957297, 21044674731991, 534313527291185, 14448883517785111, 414475305054698417, 12568507978358276311, 401658204472560090545, 13490011548122407566871, 474964861088609044357937, 17491333169997896126211031
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 31*x^3/3! + 257*x^4/4! +... A(log(1+x)) = P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..400
Programs
-
Mathematica
Table[Sum[PartitionsP[k]*StirlingS2[n, k]*k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 21 2018 *) nmax = 20; CoefficientList[Series[1/QPochhammer[E^x - 1], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 22 2021 *)
-
PARI
{a(n)=if(n==0,1,n!*polcoeff(exp(sum(m=1,n,sigma(m)*(exp(x+x*O(x^n))-1)^m/m) ),n))}
-
PARI
{Stirling2(n, k)=if(k<0||k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))} {a(n)=sum(k=0,n,numbpart(k)*Stirling2(n, k)*k!)}
-
PARI
x='x+O('x^66); Vec( serlaplace( 1/eta(exp(x)-1) ) ) \\ Joerg Arndt, Sep 18 2013
Formula
E.g.f.: exp( Sum_{n>=1} sigma(n)*[exp(x)-1]^n/n ).
Sum_{n>=0} a(n) * log(1+x)^n/n! = g.f. of the partition numbers (A000041).
Sum_{n>=0} a(n)^2*log(1+x)^n/n! = g.f. of A167138.
From Peter Bala, Sep 18 2013: (Start)
Sum {n >= 0} (-1)^n*a(n)*(log(1 - x))^n/n! = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + ... is the o.g.f. of A218482.
a(n) is always odd. Congruences for n >= 1: a(2*n) = 2 (mod 3); a(4*n) = 2 (mod 5); a(6*n) = 0 (mod 7); a(10*n) = 7 (mod 11); a(12*n) = 5 (mod 13); a(16*n) = 0 (mod 17). (End)
From Vaclav Kotesovec, Jun 17 2018: (Start)
a(n) ~ n! * exp((1/log(2) - 1) * Pi^2 / 24 + Pi*sqrt(n/(3*log(2)))) / (4 * sqrt(3) * n * (log(2))^n).
a(n) ~ sqrt(Pi) * exp((1/log(2) - 1) * Pi^2 / 24 + Pi*sqrt(n/(3*log(2))) - n) * n^(n + 1/2) / (2^(3/2) * sqrt(3) * n * (log(2))^n). (End)
Comments