A167138
G.f.: Sum_{n>=0} A167137(n)^2 * log(1+x)^n/n! where Sum_{n>=0} A167137(n)*log(1+x)^n/n! = g.f. of the partition numbers (A000041).
Original entry on oeis.org
1, 1, 12, 148, 2523, 48996, 1127354, 29348080, 849632392, 27096593838, 943340417806, 35501579861404, 1434531966551084, 61939404662074706, 2844544965703554566, 138338597978951126666, 7098617731036257970895
Offset: 0
G.f.: A(x) = 1 + x + 12*x^2 + 148*x^3 + 2523*x^4 + ...
Illustrate A(x) = Sum_{n>=0} A167137(n)^2*log(1+x)^n/n!:
A(x) = 1 + log(1+x) + 5^2*log(1+x)^2/2! + 31^2*log(1+x)^3/3! + 257^2*log(1+x)^4/4! + ...
where P(x), the partition function of A000041, is generated by:
P(x) = 1 + log(1+x) + 5*log(1+x)^2/2! + 31*log(1+x)^3/3! + 257*log(1+x)^4/4! + ...
-
{A167137(n)=sum(k=0,n,numbpart(k)*stirling(n, k, 2)*k!)}
{a(n)=polcoef(sum(m=0,n,A167137(m)^2*log(1+x+x*O(x^n))^m/m!),n)}
A305550
Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k).
Original entry on oeis.org
1, 1, 3, 19, 135, 1171, 12543, 156619, 2185095, 33787171, 579341583, 10927420219, 223956672855, 4940901389971, 116678668726623, 2938719256363819, 78709685812037415, 2234633592020685571, 67005923560416063663, 2114549937496479803419, 70024572874029038582775, 2427790107567416812409971
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> add(Stirling2(n, k)*k!*b(k), k=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
-
nmax = 21; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Exp[Sum[(-1)^k (Exp[x] - 1)^k/(k ((Exp[x] - 1)^k - 1)), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] PartitionsQ[k] k!, {k, 0, n}], {n, 0, 21}]
A306045
Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k) / (1 - (exp(x) - 1)^k).
Original entry on oeis.org
1, 2, 10, 74, 682, 7562, 98410, 1463114, 24367402, 449039882, 9069093610, 199050295754, 4713774570922, 119735740542602, 3246094020405610, 93519923311825994, 2852458136048627242, 91805618091515859722, 3108657616523130770410, 110453876295411957125834
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k) / (1 - (Exp[x] - 1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
A320349
Expansion of e.g.f. Product_{k>=1} 1/(1 - log(1/(1 - x))^k).
Original entry on oeis.org
1, 1, 5, 32, 278, 2894, 35986, 514128, 8306448, 149558688, 2968216944, 64314676128, 1510065781968, 38178537908016, 1033794746169168, 29840453678758272, 914461132860063360, 29645845798652997120, 1013511411165693991680, 36436289007997132646400, 1373976152501162688288000
Offset: 0
-
seq(n!*coeff(series(mul(1/(1-log(1/(1-x))^k),k=1..100),x=0,21),x,n),n=0..20); # Paolo P. Lava, Jan 09 2019
-
nmax = 20; CoefficientList[Series[Product[1/(1 - Log[1/(1 - x)]^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k] Log[1/(1 - x)]^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] PartitionsP[k] k!, {k, 0, n}], {n, 0, 20}]
A330353
Expansion of e.g.f. Sum_{k>=1} (exp(x) - 1)^k / (k * (1 - (exp(x) - 1)^k)).
Original entry on oeis.org
1, 4, 18, 112, 810, 7144, 73458, 850672, 11069370, 161190904, 2575237698, 44571447232, 836188737930, 16970931765064, 368985732635538, 8524290269083792, 208874053200038490, 5428866923032585624, 149250273758730282978, 4318265042184721248352
Offset: 1
Cf.
A000041,
A000203,
A000629,
A002745,
A008277,
A038048,
A167137,
A308555,
A330351,
A330352,
A330354.
-
nmax = 20; CoefficientList[Series[Sum[(Exp[x] - 1)^k/(k (1 - (Exp[x] - 1)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]
A305986
Expansion of e.g.f. Product_{k>=1} 1/(1 - (exp(x) - 1)^k/k).
Original entry on oeis.org
1, 1, 4, 21, 144, 1205, 11908, 135597, 1745488, 25045821, 396249564, 6850289765, 128438323720, 2595394603269, 56224162108468, 1299717221807229, 31931915643021504, 830816659779428525, 22820190255069409804, 659845945466402034165, 20034230527927369097848, 637252918691725377815349
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(combinat[multinomial](n, n-i*j, i$j)*
b(n-i*j, i-1)*(i-1)!^j, j=0..n/i)))
end:
a:= n-> add(Stirling2(n, j)*b(j$2), j=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
-
nmax = 21; CoefficientList[Series[Product[1/(1 - (Exp[x] - 1)^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(Exp[x] - 1)^(j k)/(k j^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
b[0] = 1; b[n_] := b[n] = Sum[(n - 1)!/(n - k)! DivisorSum[k, #^(1 - k/#) &] b[n - k], {k, 1, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k], {k, 0, n}]; Table[a[n], {n, 0, 21}]
A306042
Expansion of e.g.f. Product_{k>=1} 1/(1 - log(1 + x)^k).
Original entry on oeis.org
1, 1, 3, 8, 50, 94, 2446, -9024, 297216, -3183264, 64191984, -1041792192, 22098943632, -478805234064, 11856288460272, -308662348027008, 8575865689645440, -248582819381690880, 7556655091130023680, -240521346554744194560, 8049494171497089265920, -283469026458500121634560
Offset: 0
-
a:=series(mul(1/(1-log(1+x)^k),k=1..100),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
-
nmax = 21; CoefficientList[Series[Product[1/(1 - Log[1 + x]^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k] Log[1 + x]^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] PartitionsP[k] k!, {k, 0, n}], {n, 0, 21}]
A306046
Expansion of e.g.f. Product_{k>=1} 1/(1 - (exp(x) - 1)^k)^k.
Original entry on oeis.org
1, 1, 7, 55, 571, 6991, 101467, 1682815, 31370731, 648823951, 14728727227, 363609116575, 9692252794891, 277304683729711, 8471938268282587, 275137855204310335, 9461893931226763051, 343394421233354232271, 13112532730352768439547, 525396814643685317840095
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1 - (Exp[x] - 1)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
A306022
Stirling transform of partitions numbers (A000041).
Original entry on oeis.org
1, 1, 3, 10, 38, 163, 774, 4006, 22376, 133951, 854402, 5775948, 41190317, 308651432, 2422315371, 19856073597, 169596622997, 1506139073454, 13879704561038, 132488897335228, 1307829322689944, 13330635710335512, 140118664473276174, 1516899115597189064
Offset: 0
-
a:= n-> add(combinat[numbpart](j)*Stirling2(n, j), j=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Jun 17 2018
-
Table[Sum[StirlingS2[n, k]*PartitionsP[k], {k, 0, n}], {n, 0, 25}]
-
a(n) = sum(k=0, n, stirling(n, k, 2)*numbpart(k)); \\ Michel Marcus, Jun 17 2018
A316143
Expansion of e.g.f. Product_{k>=1} 1 / (1 - (exp(x)-1)^k)^2.
Original entry on oeis.org
1, 2, 12, 92, 912, 10772, 148512, 2328692, 40842912, 791302772, 16767551712, 385382491892, 9542377300512, 253105962752372, 7156766466076512, 214814484529608692, 6819311473596695712, 228212485803422931572, 8028037725386962194912, 296094910181041530831092
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1-(Exp[x]-1)^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
Showing 1-10 of 17 results.
Comments