A167137
E.g.f.: P(exp(x)-1) where P(x) is the g.f. of the partition numbers (A000041).
Original entry on oeis.org
1, 1, 5, 31, 257, 2551, 30065, 407191, 6214577, 105530071, 1972879025, 40213910551, 886979957297, 21044674731991, 534313527291185, 14448883517785111, 414475305054698417, 12568507978358276311, 401658204472560090545, 13490011548122407566871, 474964861088609044357937, 17491333169997896126211031
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 31*x^3/3! + 257*x^4/4! +...
A(log(1+x)) = P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 +...
-
Table[Sum[PartitionsP[k]*StirlingS2[n, k]*k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 21 2018 *)
nmax = 20; CoefficientList[Series[1/QPochhammer[E^x - 1], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 22 2021 *)
-
{a(n)=if(n==0,1,n!*polcoeff(exp(sum(m=1,n,sigma(m)*(exp(x+x*O(x^n))-1)^m/m) ),n))}
-
{Stirling2(n, k)=if(k<0||k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
{a(n)=sum(k=0,n,numbpart(k)*Stirling2(n, k)*k!)}
-
x='x+O('x^66); Vec( serlaplace( 1/eta(exp(x)-1) ) ) \\ Joerg Arndt, Sep 18 2013
A306045
Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k) / (1 - (exp(x) - 1)^k).
Original entry on oeis.org
1, 2, 10, 74, 682, 7562, 98410, 1463114, 24367402, 449039882, 9069093610, 199050295754, 4713774570922, 119735740542602, 3246094020405610, 93519923311825994, 2852458136048627242, 91805618091515859722, 3108657616523130770410, 110453876295411957125834
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k) / (1 - (Exp[x] - 1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
A305987
Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k/k).
Original entry on oeis.org
1, 1, 2, 9, 52, 355, 2976, 29897, 343988, 4423503, 63088600, 992691205, 17095554444, 319404545291, 6427307831504, 138546745515393, 3185841858310180, 77866726065935239, 2016161715005701128, 55127056896177521981, 1587073087715010466556, 47982707153606476112067, 1519931218769637781731712
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(combinat[multinomial](n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*(i-1)!^j, j=0..min(1, n/i))))
end:
a:= n-> add(Stirling2(n, j)*b(j$2), j=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
-
nmax = 22; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) (Exp[x] - 1)^(j k)/(k j^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
b[0] = 1; b[n_] := b[n] = Sum[(n - 1)!/(n - k)! DivisorSum[k, (-#)^(1 - k/#) &] b[n - k], {k, 1, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k], {k, 0, n}]; Table[a[n], {n, 0, 22}]
A306046
Expansion of e.g.f. Product_{k>=1} 1/(1 - (exp(x) - 1)^k)^k.
Original entry on oeis.org
1, 1, 7, 55, 571, 6991, 101467, 1682815, 31370731, 648823951, 14728727227, 363609116575, 9692252794891, 277304683729711, 8471938268282587, 275137855204310335, 9461893931226763051, 343394421233354232271, 13112532730352768439547, 525396814643685317840095
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1 - (Exp[x] - 1)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
A320350
Expansion of e.g.f. Product_{k>=1} (1 + log(1/(1 - x))^k).
Original entry on oeis.org
1, 1, 3, 20, 148, 1384, 15728, 207696, 3094152, 51423288, 945943512, 19083180192, 418550811600, 9907493349168, 251588827187280, 6820899616891008, 196645361557479552, 6007407711127690752, 193842462200078260224, 6586904673329133618432, 235079477736802622742528, 8790132360155070084076800
Offset: 0
-
seq(n!*coeff(series(mul((1 + log(1/(1 - x))^k),k=1..100),x=0,22),x,n),n=0..21); # Paolo P. Lava, Jan 09 2019
-
nmax = 21; CoefficientList[Series[Product[(1 + Log[1/(1 - x)]^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] PartitionsQ[k] k!, {k, 0, n}], {n, 0, 21}]
A306023
Stirling transform of partitions into distinct parts (A000009).
Original entry on oeis.org
1, 1, 2, 6, 22, 89, 391, 1875, 9822, 55817, 340535, 2208681, 15118109, 108677575, 817914056, 6431115486, 52741729600, 450432487463, 3999401133601, 36853795902353, 351799243932131, 3472526583025397, 35382850151528847, 371592232539942447, 4016792440158613798
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> add(b(j)*Stirling2(n, j), j=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Jun 17 2018
-
Table[Sum[StirlingS2[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 25}]
A306081
Expansion of e.g.f. Product_{k>=1} ((1 + (exp(x) - 1)^k) / (1 - (exp(x) - 1)^k))^k.
Original entry on oeis.org
1, 2, 14, 134, 1574, 22262, 367814, 6907574, 144942854, 3357588662, 85000841414, 2331998188214, 68862337593734, 2176283210561462, 73250933670041414, 2614843434740912054, 98632371931151518214, 3918608865052986708662, 163507638190268814991814
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[((1 + (Exp[x] - 1)^k)/(1 - (Exp[x] - 1)^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
A298905
Expansion of e.g.f. Product_{k>=1} (1 + log(1 + x)^k).
Original entry on oeis.org
1, 1, 1, 8, -8, 224, -712, 9120, -53496, 980088, -14394648, 264140832, -4113747024, 59028225840, -545558201424, -4191307074432, 450100910950272, -17302659472138752, 530508727766191104, -14790496500550616832, 408513443917280375808, -12274212131738107257600
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> add(Stirling1(n, j)*b(j)*j!, j=0..n):
seq(a(n), n=0..23); # Alois P. Heinz, Jun 18 2018
-
nmax = 21; CoefficientList[Series[Product[(1 + Log[1 + x]^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) Log[1 + x]^k/(k (1 - Log[1 + x]^k)), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] PartitionsQ[k] k!, {k, 0, n}], {n, 0, 21}]
A316142
Expansion of e.g.f. Product_{k>=1} (1 + (exp(x)-1)^k)^2.
Original entry on oeis.org
1, 2, 8, 56, 476, 4832, 58508, 815936, 12750956, 220610432, 4195325708, 86976996416, 1949966347436, 46965887762432, 1208922621624908, 33111231803362496, 961354836530983916, 29490401681798152832, 952900154176192244108, 32342850619899263226176
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1+(Exp[x]-1)^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
A326884
E.g.f.: Product_{k>=1} (1 + k*(exp(x)-1)^k).
Original entry on oeis.org
1, 1, 5, 43, 377, 4291, 58745, 914803, 15641897, 298104451, 6337624985, 147137420563, 3674045105417, 98093008751011, 2793940490888825, 84812168406518323, 2737609202984488937, 93486719521251467971, 3358396276982001106265, 126434158646122122080083
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1+k*(Exp[x]-1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
Showing 1-10 of 16 results.
Comments