cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306023 Stirling transform of partitions into distinct parts (A000009).

Original entry on oeis.org

1, 1, 2, 6, 22, 89, 391, 1875, 9822, 55817, 340535, 2208681, 15118109, 108677575, 817914056, 6431115486, 52741729600, 450432487463, 3999401133601, 36853795902353, 351799243932131, 3472526583025397, 35382850151528847, 371592232539942447, 4016792440158613798
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 17 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> add(b(j)*Stirling2(n, j), j=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 17 2018
  • Mathematica
    Table[Sum[StirlingS2[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 25}]

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*A000009(k).

A316145 a(n) = Sum_{k=0..n} Stirling2(n,k) * A000041(k) * k^k.

Original entry on oeis.org

1, 9, 106, 1823, 36821, 932080, 26666067, 876727561, 32137538059, 1305168046976, 57774609056649, 2783202675369037, 144453227105110782, 8035192765567735275, 476686201707606976317, 30053582893540865299197, 2005019178999976881804130, 141111387620531900621281975
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 25 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS2[n, k] * PartitionsP[k] * k^k, {k, 1, n}], {n, 1, 20}]

Formula

Limit_{n -> infinity} (a(n)/n!)^(1/n) = 1/(log(1+ exp(1)) - 1) = 3.1922192845297391106277924019427161296056687330974482534324... - Vaclav Kotesovec, Nov 21 2021
log(a(n) / A316146(n)) ~ (sqrt(2) - 1) * Pi * sqrt(n) / sqrt(3*(1 + exp(1)) * log(1 + exp(-1))). - Vaclav Kotesovec, Nov 22 2021

A327601 Expansion of e.g.f. exp(x) * Product_{k>=1} 1/(1 - (1 - exp(x))^k).

Original entry on oeis.org

1, 0, 2, 0, 26, 120, 1922, 21840, 307946, 4251240, 63165842, 1010729280, 18501318266, 391496665560, 9265945721762, 232411950454320, 5972325812958986, 156131611764907080, 4208451299935189682, 119669466221148348960, 3658459009408581118106
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 18 2019

Keywords

Comments

Stirling-Bernoulli transform of partition numbers (A000041).

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[x] Product[1/(1 - (1 - Exp[x])^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^k StirlingS2[n + 1, k + 1] k! PartitionsP[k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, (-1)^k*stirling(n+1, k+1, 2)*k!*numbpart(k)); \\ Michel Marcus, Sep 19 2019

Formula

a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n+1,k+1) * k! * A000041(k).
Showing 1-3 of 3 results.