cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167167 A001045 with a(0) replaced by -1.

Original entry on oeis.org

-1, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531
Offset: 0

Views

Author

Paul Curtz, Oct 29 2009

Keywords

Comments

Essentially the same as A001045, and perhaps also A152046.
Also the binomial transform of the sequence with terms (-1)^(n+1)*A128209(n).

Programs

  • GAP
    Concatenation([-1], List([1..35], n-> (2^n -(-1)^n)/3) ); # G. C. Greubel, Dec 01 2019
  • Magma
    [-1] cat [(2^n -(-1)^n)/3 : n in [1..35]]; // G. C. Greubel, Dec 01 2019
    
  • Maple
    seq( `if`(n=0, -1, (2^n -(-1)^n)/3), n=0..35); # G. C. Greubel, Dec 01 2019
  • Mathematica
    CoefficientList[Series[(2*x-1+2*x^2)/((1+x)*(1-2*x)), {x, 0, 35}], x] (* G. C. Greubel, Jun 04 2016 *)
    Table[If[n==0, -1, (2^n -(-1)^n)/3], {n,0,35}] (* G. C. Greubel, Dec 01 2019 *)
    LinearRecurrence[{1,2},{-1,1,1},40] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    vector(36, n, if(n==1, -1, (2^(n-1) +(-1)^n)/3 ) ) \\ G. C. Greubel, Dec 01 2019
    
  • Sage
    [-1]+[lucas_number1(n, 1, -2) for n in (1..35)] # G. C. Greubel, Dec 01 2019
    

Formula

a(n) = A001045(n), n>0.
a(n) + a(n+1) = 2*A001782(n) = 2*A131577(n) = A155559(n) = A090129(n+2), n>0.
G.f.: (2*x^2 + 2*x - 1)/((1+x)*(1-2*x)).
E.g.f.: (exp(2*x) - exp(-x) - 3)/3. - G. C. Greubel, Dec 01 2019

Extensions

Edited and extended by R. J. Mathar, Nov 01 2009