A167167 A001045 with a(0) replaced by -1.
-1, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2).
Programs
-
GAP
Concatenation([-1], List([1..35], n-> (2^n -(-1)^n)/3) ); # G. C. Greubel, Dec 01 2019
-
Magma
[-1] cat [(2^n -(-1)^n)/3 : n in [1..35]]; // G. C. Greubel, Dec 01 2019
-
Maple
seq( `if`(n=0, -1, (2^n -(-1)^n)/3), n=0..35); # G. C. Greubel, Dec 01 2019
-
Mathematica
CoefficientList[Series[(2*x-1+2*x^2)/((1+x)*(1-2*x)), {x, 0, 35}], x] (* G. C. Greubel, Jun 04 2016 *) Table[If[n==0, -1, (2^n -(-1)^n)/3], {n,0,35}] (* G. C. Greubel, Dec 01 2019 *) LinearRecurrence[{1,2},{-1,1,1},40] (* Harvey P. Dale, Jul 23 2025 *)
-
PARI
vector(36, n, if(n==1, -1, (2^(n-1) +(-1)^n)/3 ) ) \\ G. C. Greubel, Dec 01 2019
-
Sage
[-1]+[lucas_number1(n, 1, -2) for n in (1..35)] # G. C. Greubel, Dec 01 2019
Formula
Extensions
Edited and extended by R. J. Mathar, Nov 01 2009
Comments