A167170 a(6) = 14, for n >= 7, a(n) = a(n-1) + gcd(n, a(n-1)).
14, 21, 22, 23, 24, 25, 26, 39, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 177, 180, 181, 182, 189, 190, 195
Offset: 6
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 6..1000
- Eric S. Rowland, A natural prime-generating recurrence, J. of Integer Sequences 11 (2008), Article 08.2.8.
- V. Shevelev, An infinite set of generators of primes based on the Rowland idea and conjectures concerning twin primes, arXiv:0910.4676 [math.NT], 2009.
Crossrefs
Programs
-
Maple
A167170 := proc(n) option remember; if n = 6 then 14; else procname(n-1)+igcd(n,procname(n-1)) ; end if; end proc: seq(A167170(i),i=6..80) ; # R. J. Mathar, Oct 30 2010
-
Mathematica
RecurrenceTable[{a[n] == a[n - 1] + GCD[n, a[n - 1]], a[6] == 14}, a, {n, 6, 100}] (* G. C. Greubel, Jun 04 2016 *) nxt[{n_,a_}]:={n+1,a+GCD[a,n+1]}; NestList[nxt,{6,14},60][[All,2]] (* Harvey P. Dale, Nov 03 2019 *)
-
PARI
first(n)=my(v=vector(n-5)); v[1]=14; for(k=7,n, v[k-5]=v[k-6]+gcd(k,v[k-6])); v \\ Charles R Greathouse IV, Aug 22 2017
Extensions
Terms > 91 from R. J. Mathar, Oct 30 2010
Comments