A167193 a(n) = (1/3)*(1 - (-2)^n + 3*(-1)^n ) = (-1)^(n+1)*A167030(n).
1, 0, 0, 2, -4, 10, -20, 42, -84, 170, -340, 682, -1364, 2730, -5460, 10922, -21844, 43690, -87380, 174762, -349524, 699050, -1398100, 2796202, -5592404, 11184810, -22369620, 44739242, -89478484, 178956970, -357913940, 715827882, -1431655764, 2863311530, -5726623060, 11453246122, -22906492244, 45812984490
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-2,1,2).
Programs
-
Magma
[( 1-(-1)^n*2^n)/3+(-1)^n: n in [0..40] ]; // Vincenzo Librandi, Aug 06 2011
-
Mathematica
LinearRecurrence[{-2,1,2},{1,0,0}, 25] (* or *) Table[(1/3)*(1 + 3*(-1)^n - (-2)^n), {n,0,25}] (* G. C. Greubel, Jun 04 2016 *)
Formula
G.f.: ( -1 - 2*x + x^2 ) / ( (x-1)*(1+2*x)*(1+x) ).
a(n) = -a(n-1) + 2*a(n-2) - 2*(-1)^n.
a(n) = -2*a(n-1) + a(n-2) + 2*a(n-3).
E.g.f.: (1/3)*(exp(x) + 3*exp(-x) - exp(-2*x)). - G. C. Greubel, Jun 04 2016
Comments