cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167387 a(n) = (-1)^(n+1) * n*(n-1)*(n-4)*(n+1)/12.

Original entry on oeis.org

1, -2, 0, 10, -35, 84, -168, 300, -495, 770, -1144, 1638, -2275, 3080, -4080, 5304, -6783, 8550, -10640, 13090, -15939, 19228, -23000, 27300, -32175, 37674, -43848, 50750, -58435, 66960, -76384, 86768, -98175, 110670, -124320, 139194, -155363, 172900
Offset: 2

Views

Author

Jamel Ghanouchi, Nov 02 2009

Keywords

Comments

The coefficient of [x^4] of the Polynomial B_{2n}(x) defined in A137276.
Essentially the same as A052472.

Crossrefs

Programs

  • GAP
    List([2..40], n-> (-1)^(n+1)*(n-4)*Binomial(n+1,3)/2); # G. C. Greubel, May 19 2019
  • Magma
    [(-1)^(n+1)*n*(n-1)*(n-4)*(n+1)/12: n in [2..40]]; // Vincenzo Librandi, Jun 13 2016
    
  • Mathematica
    Table[(-1)^(n+1)*(n+1)*n*(n-1)*(n-4)/12, {n, 2, 40}] (* G. C. Greubel, Jun 12 2016 *)
    LinearRecurrence[{-5, -10, -10, -5, -1}, {1, -2, 0, 10, -35}, 40] (* Vincenzo Librandi, Jun 13 2016 *)
  • PARI
    vector(40, n, n++; (-1)^(n+1)*(n-4)*binomial(n+1,3)/2) \\ G. C. Greubel, May 19 2019
    
  • Sage
    [(-1)^(n+1)*(n-4)*binomial(n+1,3)/2 for n in (2..40)] # G. C. Greubel, May 19 2019
    

Formula

a(n) = -5*a(n-1) -10*a(n-2) -10*a(n-3) -5*a(n-4) -a(n-5).
G.f.: x^2*(1+3*x)/(1+x)^5.
E.g.f.: x^2*(6 + 2*x - x^2)*exp(-x)/12. - G. C. Greubel, May 19 2019