A167392 Characteristic function of partition numbers.
0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for characteristic functions
Crossrefs
Cf. A167393.
Programs
-
Haskell
import Data.List.Ordered (member) a167392 = fromEnum . flip member a000041_list -- Reinhard Zumkeller, Nov 03 2015
-
Mathematica
nmax = 14; (* nmax=14 gives P(nmax)+1 = 136 terms; nmax=33 gives 10144 terms *) PP = Table[PartitionsP[n], {n, 0, nmax}]; a[n_] := Boole[MemberQ[PP, n]]; Table[a[n], {n, 0, PartitionsP[nmax]}] (* Jean-François Alcover, Mar 02 2019 *)
-
PARI
a(n) = {k=0; while ((pk=numbpart(k)) != n, if (pk > n, return(0)); k++); return (1);} \\ Michel Marcus, Nov 03 2015