A186114 Triangle of regions and partitions of integers (see Comments lines for definition).
1, 1, 2, 1, 1, 3, 0, 0, 0, 2, 1, 1, 1, 2, 4, 0, 0, 0, 0, 0, 3, 1, 1, 1, 1, 1, 2, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7
Offset: 1
Examples
Triangle begins: 1, 1, 2, 1, 1, 3, 0, 0, 0, 2, 1, 1, 1, 2, 4, 0, 0, 0, 0, 0, 3, 1, 1, 1, 1, 1, 2, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6 ... The row n = 11 contains the 6th record in the sequence: a(66) = T(11,11) = 6, then consider the first 11 rows of triangle. Note that the columns, from k = 11..1, without the zeros, are also the 11 partitions of 6 in juxtaposed reverse-lexicographical order: [6], [3, 3], [4, 2], [2, 2, 2], [5, 1], [3, 2, 1], [4, 1, 1], [2, 2, 1, 1], [3, 1, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]. See A026792.
Links
- Robert Price, Table of n, a(n) for n = 1..196878, rows 1-627.
- Omar E. Pol, Illustration of the seven regions of 5
Crossrefs
Programs
-
Mathematica
A206437 = Cases[Import["https://oeis.org/A206437/b206437.txt", "Table"], {, }][[All, 2]]; A194446 = Cases[Import["https://oeis.org/A194446/b194446.txt", "Table"], {, }][[All, 2]]; f[n_] := Module[{v}, v = Take[A206437, A194446[[n]]]; A206437 = Drop[A206437, A194446[[n]]]; Reverse[PadRight[v, n]]]; Table[f[n], {n, PartitionsP[20]}] // Flatten (* Robert Price, Apr 26 2020 *)
Comments