A206437 Triangle read by rows: T(j,k) is the k-th part of the j-th region of the set of partitions of n, if 1 <= j <= A000041(n).
1, 2, 1, 3, 1, 1, 2, 4, 2, 1, 1, 1, 3, 5, 2, 1, 1, 1, 1, 1, 2, 4, 2, 3, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 5, 2, 4, 7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 2, 3, 6, 3, 2, 2, 5, 4, 8, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
------------------------------------------- Region j Triangle of parts ------------------------------------------- 1 1; 2 2,1; 3 3,1,1; 4 2; 5 4,2,1,1,1; 6 3; 7 5,2,1,1,1,1,1; 8 2; 9 4,2; 10 3; 11 6,3,2,2,1,1,1,1,1,1,1; 12 3; 13 5,2; 14 4; 15 7,3,2,2,1,1,1,1,1,1,1,1,1,1,1; . The rotated triangle shows each row as a partition: 7 4 3 5 2 3 2 2 6 1 3 3 1 4 2 1 2 2 2 1 5 1 1 3 2 1 1 4 1 1 1 2 2 1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 . Alternative interpretation of this sequence: Triangle read by rows in which row r lists the parts of the last section of the set of partitions of r ordered by regions (see comments): [1]; [2,1]; [3,1,1]; [2],[4,2,1,1,1]; [3],[5,2,1,1,1,1,1]; [2],[4,2],[3],[6,3,2,2,1,1,1,1,1,1,1]; [3],[5,2],[4],[7,3,2,2,1,1,1,1,1,1,1,1,1,1,1];
Links
- Robert Price, Table of n, a(n) for n = 1..321, first 75 regions.
- Omar E. Pol, Illustration of the seven regions of 5
- Omar E. Pol, Illustration of initial terms, regions = 1..77 (2D view)
- Omar E. Pol, Illustration of initial terms, regions = 1..30 (3D view)
- Omar E. Pol, Visualization of regions in a diagram for A006128
- Robert Price, Mathematica program to draw diagram up to n=28
Crossrefs
Programs
-
Mathematica
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0, 2]; reg = {}; l = {}; For[j = 1, j <= 22, j++, mx = Max@lex[j][[j]]; AppendTo[l, mx]; For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]]; AppendTo[reg, Take[Reverse[First /@ lex[mx]], j - i]]; ]; Flatten@reg (* Robert Price, Apr 21 2020, revised Jul 24 2020 *)
Extensions
Further edited by Omar E. Pol, Mar 31 2012, Jan 27 2013
Minor edits by Omar E. Pol, Apr 23 2020
Comments corrected (following a suggestion from Peter Munn) by Omar E. Pol, Jul 20 2025
Comments