A167408 Orderly numbers: a number n is orderly if there exists some number k > tau(n) such that the set of the divisors of n is congruent to the set {1,2,...,tau(n)} mod k.
1, 2, 5, 7, 8, 9, 11, 12, 13, 17, 19, 20, 23, 27, 29, 31, 37, 38, 41, 43, 47, 52, 53, 57, 58, 59, 61, 67, 68, 71, 72, 73, 76, 79, 83, 87, 89, 97, 101, 103, 107, 109, 113, 117, 118, 124, 127, 131, 133, 137, 139, 149, 151, 157, 158, 162, 163, 164, 167, 173, 177, 178, 179
Offset: 1
Examples
12 is an orderly number because 12's divisors are 1,2,3,4,6,12 and 1 == 1 (mod 7) 2 == 2 (mod 7) 3 == 3 (mod 7) 4 == 4 (mod 7) 12 == 5 (mod 7) 6 == 6 (mod 7)
Links
- A. Weimholt, Table of n, a(n) for n = 1..10000
- Bill McEachen, A167408/A002858
Crossrefs
Programs
-
Mathematica
orderlyQ[n_] := (For[dd = Divisors[n]; tau = Length[dd]; k = 3, k <= Max[tau + 4, Last[dd] - 2], k++, If[ Union[ Mod[dd, k]] == Range[tau], Return[True]]]; False); Select[ Range[180], orderlyQ] (* Jean-François Alcover, Aug 19 2013 *)
Extensions
Minor editing by N. J. A. Sloane, Nov 06 2009
Information about the tau(n)+3 orderly numbers corrected by T. D. Noe, Nov 16 2009
Comments