cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A167408 Orderly numbers: a number n is orderly if there exists some number k > tau(n) such that the set of the divisors of n is congruent to the set {1,2,...,tau(n)} mod k.

Original entry on oeis.org

1, 2, 5, 7, 8, 9, 11, 12, 13, 17, 19, 20, 23, 27, 29, 31, 37, 38, 41, 43, 47, 52, 53, 57, 58, 59, 61, 67, 68, 71, 72, 73, 76, 79, 83, 87, 89, 97, 101, 103, 107, 109, 113, 117, 118, 124, 127, 131, 133, 137, 139, 149, 151, 157, 158, 162, 163, 164, 167, 173, 177, 178, 179
Offset: 1

Views

Author

Andrew Weimholt, Nov 03 2009

Keywords

Comments

n: {divisors(n)} == {1,2,...,tau(n)} mod k
-------------------------------------------
1: {1} == {1} mod 2
2: {1,2} == {1,2} mod 3
5: {1,5} == {1,2} mod 3
7: {1,7} == {1,2} mod 5
8: {1,2,8,4} == {1,2,3,4} mod 5
9: {1,9,3} == {1,2,3} mod 7
11: {1,11} == {1,2} mod 3 or 9
12: {1,2,3,4,12,6} == {1,2,3,4,5,6} mod 7
13: {1,13} == {1,2} mod 11
17: {1,17} == {1,2} mod 3,5, or 15
19: {1,19} == 1,2 mod 17
20: {1,2,10,4,5,20} == {1,2,3,4,5,6} mod 7
23: {1,23} == {1,2} mod 3,7, or 21
27: {1,27,3,9} == {1,2,3,4} mod 5
29: {1,29} == {1,2} mod 3,9, or 27
31: {1,31} == {1,2} mod 29
37: {1,37} == 1,2 mod 5,7, or 35
38: {1,2,38,19} == {1,2,3,4} mod 5
41: {1,41} == {1,2} mod 3,13, or 39
43: {1,43} == {1,2} mod 41
47: {1,47} == {1,2} mod 3,5,9,15, or 45
52: {1,2,52,4,26,13} == {1,2,3,4,5,6} mod 7
53: {1,53} == {1,2} mod 3,17, or 51
57: {1,57,3,19} == {1,2,3,4} mod 5
58: {1,2,58,29} == {1,2,3,4} mod 5
59: {1,59} == {1,2} mod 3,19, or 57
61: {1,61} == {1,2} mod 59
67: {1,67} == {1,2} mod 5,13, or 65
68: {1,2,17,4,68,34} == {1,2,3,4,5,6} mod 7
71: {1,71} == {1,2} mod 3,23, or 69
72: {1,2,3,4,18,6,72,8,9,36,24,12} == {1,2,3,4,5,6,7,8,9,10,11,12} mod 13
73: {1,73} == {1,2} mod 71
76: {1,2,38,4,19,76} == {1,2,3,4,5,6} mod 7
79: {1,79} == {1,2} mod 7,11, or 77
83: {1,83} == {1,2} mod 3,9,27, or 81
87: {1,87,3,29} == {1,2,3,4} mod 5
89: {1,89} == {1,2} mod 3,29, or 87
97: {1,97} == {1,2} mod 5,19, or 95
The primes other than 3 are orderly.
Numbers of the form 4p are orderly when p is an odd prime congruent to 3,5, or 6 mod 7.
For primes, k values can be p-2 or a divisor of p-2 other than 1.
T. D. Noe observed that for composite orderly numbers, n, k seems to be one of the three values: tau(n)+1, tau(n)+3, tau(n)+4.
The composite numbers with k = tau(n)+4 are of the form p^2, where prime p == 3 mod 7.
The orderly numbers with k = tau(n)+3 come in many forms. See A168003. It appears that tau(n)+3 is a prime with primitive root 2 (A001122).
The forms for composite orderly numbers with k = tau(n)+1 are too numerous to list here, but seem to occur for any prime k > 3.
Let p be any prime. Then p^(m-2) is in this sequence if m is a prime with primitive root p. For example, 2^(m-2) is here for every m in A001122; 3^(m-2) is here for every m in A019334; 5^(m-2) is here for every m in A019335. For every prime p, there appear to be an infinite number of prime powers p^(m-2) here. All these numbers are actually very orderly (A167409) because we can choose k = tau(n)+1. - T. D. Noe, Nov 04 2009

Examples

			12 is an orderly number because 12's divisors are 1,2,3,4,6,12 and
   1 == 1 (mod 7)
   2 == 2 (mod 7)
   3 == 3 (mod 7)
   4 == 4 (mod 7)
  12 == 5 (mod 7)
   6 == 6 (mod 7)
		

Crossrefs

Cf. A167409 = very orderly numbers (k = tau(n) + 1).
Cf. A167410 = disorderly numbers = numbers not in this sequence.
Cf. A167411 = minimal k values for the orderly numbers.

Programs

  • Mathematica
    orderlyQ[n_] := (For[dd = Divisors[n]; tau = Length[dd]; k = 3, k <= Max[tau + 4, Last[dd] - 2], k++, If[ Union[ Mod[dd, k]] == Range[tau], Return[True]]]; False); Select[ Range[180], orderlyQ] (* Jean-François Alcover, Aug 19 2013 *)

Extensions

Minor editing by N. J. A. Sloane, Nov 06 2009
Information about the tau(n)+3 orderly numbers corrected by T. D. Noe, Nov 16 2009

A167409 Very orderly numbers: a number N is "very orderly" if the set of the divisors of N is congruent to the set {1,2,...,tau(N)} mod (tau(N) + 1).

Original entry on oeis.org

1, 2, 5, 8, 11, 12, 17, 20, 23, 27, 29, 38, 41, 47, 52, 53, 57, 58, 59, 68, 71, 72, 76, 83, 87, 89, 101, 107, 113, 117, 118, 124, 131, 133, 137, 149, 158, 162, 164, 167, 173, 177, 178, 179, 188, 191, 197, 203, 218, 227, 233, 236, 237, 239, 243, 244, 247, 251, 257
Offset: 1

Views

Author

Andrew Weimholt, Nov 03 2009

Keywords

Comments

The very orderly numbers are orderly numbers (cf. A167408) with K = tau(N) + 1.
Equivalently, all divisors must be pairwise distinct and distinct from 0, modulo tau(N) = number of divisors of N. - M. F. Hasler, Mar 21 2023

Examples

			12 is in the sequence as it has the 6 divisors {1, 2, 3, 4, 12, 6} which when reduced mod (6+1) give {1, 2, 3, 4, 5, 6} = {1, 2, ..., tau(12)}. - _David A. Corneth_, Mar 21 2023
		

Crossrefs

Cf. A167408 (orderly numbers), A167410 (disorderly numbers).
Cf. A167411 (minimal K values for the orderly numbers).
Cf. A000005 (tau = number of divisors).

Programs

  • Mathematica
    veryOrderlyQ[n_] := (If[tau = DivisorSigma[0, n]; Union[Mod[Divisors[n], tau + 1]] == Range[tau], Return[True]]; False); Select[ Range[260], veryOrderlyQ] (* Jean-François Alcover, Aug 19 2013 *)
  • PARI
    select( {vo(n)=#(n=divisors(n))==#(n=Set(n%(1+#n))) && n[1]}, [1..999]) \\ M. F. Hasler; updated for current PARI syntax Mar 21 2023

A167410 Disorderly Numbers: numbers not in A167408 (orderly numbers).

Original entry on oeis.org

3, 4, 6, 10, 14, 15, 16, 18, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 35, 36, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 54, 55, 56, 60, 62, 63, 64, 65, 66, 69, 70, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108
Offset: 1

Views

Author

Andrew Weimholt, Nov 03 2009

Keywords

Examples

			3 is disorderly because there exists no K > 2=tau(3), such that {1,3} == {1,2} mod K.
		

Crossrefs

Cf. A167408 - Orderly Numbers
Cf. A167409 - Very Orderly Numbers ( K = tau(N)+1 )
Cf. A167411 - Minimal K Values for the Orderly Numbers

Programs

  • Mathematica
    orderlyQ[n_] := (For[dd = Divisors[n]; tau = Length[dd]; k = 3, k <= Max[tau + 4, Last[dd] - 2], k++, If[Union[Mod[dd, k]] == Range[tau], Return[True]]]; False); Select[Range[120], !orderlyQ[#]&] (* Jean-François Alcover, Nov 03 2016 *)
Showing 1-3 of 3 results.