cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A176984 Numbers k such that the k-th average of twin prime pairs is a sum of two successive primes.

Original entry on oeis.org

3, 4, 5, 6, 7, 11, 15, 17, 24, 27, 28, 31, 33, 35, 42, 44, 46, 47, 49, 52, 53, 55, 58, 64, 65, 76, 81, 88, 91, 99, 104, 107, 112, 113, 117, 118, 129, 131, 132, 135, 136, 138, 144, 146, 148, 150, 152, 153, 154, 156, 157, 162, 167, 170, 172, 173, 176, 180, 190, 192, 194
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 30 2010

Keywords

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Apr 30 2010: (Start)
    isA001043 := proc(n) for k from 1 do ps := ithprime(k)+ithprime(k+1) ; if ps >n then return false; elif ps= n then return true; end if ; end do; end proc:
    for n from 1 to 800 do if isA001043(A014574(n) ) then printf("%d,",n) ; end if; end do: (End)

Formula

{k: A014574(k) in A001043}. - R. J. Mathar, Apr 30 2010
A014574(a(n)) = A167597(n). - Amiram Eldar, Jan 21 2020

Extensions

a(42) corrected and sequence extended by R. J. Mathar, Apr 30 2010

A179485 Sums of two successive primes s such that s+-3 are primes.

Original entry on oeis.org

8, 100, 1120, 1220, 1300, 2240, 2380, 2414, 3536, 3634, 4906, 4940, 5566, 5740, 6706, 7240, 8864, 9224, 9394, 10136, 10850, 12040, 12476, 12586, 12920, 13180, 13334, 13754, 14630, 14720, 15134, 16270, 17710, 18430, 18800, 19916, 21014, 21320
Offset: 1

Views

Author

Keywords

Comments

Intersection of A001043 and A087695. - Robert Israel, Oct 25 2017

Examples

			3+5=8,8-3=5(prime),8+3=11(prime),..
		

Crossrefs

Programs

  • Maple
    q:= 2; p:= 3;
    count:= 0:
    while count < 100 do
      q:= p; p:= nextprime(p);
      s:= q+p;
      if isprime(s-3) and isprime(s+3) then
        count:= count+1; A[count]:= s;
      fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Oct 25 2017
  • Mathematica
    q=3;Select[Table[Prime[n]+Prime[n+1],{n,7!}],PrimeQ[ #-q]&&PrimeQ[ #+q]&]
    Select[Total/@Partition[Prime[Range[1400]],2,1],AllTrue[#+{3,-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 04 2018 *)
Showing 1-2 of 2 results.