cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A049416 Largest number whose square has n digits.

Original entry on oeis.org

3, 9, 31, 99, 316, 999, 3162, 9999, 31622, 99999, 316227, 999999, 3162277, 9999999, 31622776, 99999999, 316227766, 999999999, 3162277660, 9999999999, 31622776601, 99999999999, 316227766016, 999999999999, 3162277660168
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

a(n) + A180416(n) + A180425(n) + A167615(n) = A002283(n).

Examples

			31^2 = 961, but 32^2 = 1024, hence a(3) = 31.
a(4) = 99: 99^2 = 9801 has 4 digits, while 100^2 = 10000 has 5 digits.
		

Crossrefs

Cf. A061433, A049415. Equals A017936 - 1.

Programs

  • Magma
    [Ceiling(Sqrt(10^n))-1: n in [1..30]]; // Vincenzo Librandi, Oct 01 2011
  • Mathematica
    Ceiling[Sqrt[10^Range[40]]-1] (* Harvey P. Dale, Sep 30 2011 *)

Formula

a(n) = ceiling(sqrt(10^n)) - 1.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A180416 Number of positive integers below 10^n, excluding perfect squares, which have a representation as a sum of 2 positive squares.

Original entry on oeis.org

3, 33, 298, 2649, 23711, 215341, 1982296, 18447847, 173197435, 1637524156, 15570196516, 148735628858, 1426303768587, 13722207893214, 132387231596281, 1280309591127436
Offset: 1

Views

Author

Martin Renner, Jan 19 2011

Keywords

Comments

Numbers that can be represented as a sum of three or more positive squares but not as a sum of two positive squares (e.g., 3=1^2+1^2+1^2 or 6=1^2+1^2+2^2) are not counted. Numbers that can be represented as a sum of two positive squares and alternatively as a sum of three or more positive squares are counted (e.g., 18 = 9+9 = 1+1+16, 26, 41, ...).

Crossrefs

Programs

  • Maple
    isA000415 := proc(n) local x ,y2; if issqr(n) then false; else for x from 1 do y2 := n-x^2 ; if y2 < x^2 then return false; elif issqr(y2) then return true; end if; end do ; end if; end proc:
    A180416 := proc(n) a := 0 ; for k from 2 to 10^n-1 do if isA000415(k) then a := a+1 ; end if; end do: a ; end proc:
    for n from 1 do print(A180416(n)) ; end do; # R. J. Mathar, Jan 20 2011
  • Mathematica
    a[n_] := a[n] = Module[{k, xMax = Floor[Sqrt[10^n - 1]]}, Table[k = x^2 + y^2; If[IntegerQ[Sqrt[k]], Nothing, k], {x, 1, xMax}, {y, x, Floor[ Sqrt[10^n - 1 - x^2]]}] // Flatten // Union // Length];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 8}] (* Jean-François Alcover, Oct 31 2020 *)

Formula

a(n) = |{ 0A000415} }|.
a(n) = |{ 0A000404} \ {A000290}) }|.
a(n) = A002283(n) - A049416(n) - A167615(n) - A180425(n).

Extensions

a(6)-a(8) from Alois P. Heinz, Jan 20 2011
a(9)-a(10) from Donovan Johnson, Feb 04 2011
a(10) corrected and a(11)-a(16) from Hiroaki Yamanouchi, Jul 13 2014

A180425 Number of positive integers below 10^n requiring 3 positive squares in their representation as sum of squares.

Original entry on oeis.org

2, 42, 505, 5586, 59308, 616995, 6347878, 64875490, 660104281, 6695709182, 67762820595, 684596704482, 6907026402474, 69611115440126, 700946070114283, 7053023642205904
Offset: 1

Views

Author

Martin Renner, Jan 19 2011

Keywords

Crossrefs

Formula

a(n) = #{k: A000419(k) < 10^n}.
A049416(n) + A180416(n) + a(n) + A167615(n) = A002283(n).

Extensions

a(6)=616995 by Lars Blomberg, May 03 2011
a(7)-a(10) from Donovan Johnson, Jul 01 2011
a(10) corrected and a(11)-a(16) from Hiroaki Yamanouchi, Jul 13 2014

A180347 The number of n-digit numbers requiring 4 nonzero squares in their representation as sum of squares.

Original entry on oeis.org

1, 14, 150, 1500, 14999, 150000, 1499999, 15000000, 149999998, 1500000001, 14999999999, 149999999999, 1500000000001, 14999999999999, 149999999999999, 1500000000000001, 14999999999999998, 149999999999999999, 1500000000000000003, 14999999999999999996
Offset: 1

Views

Author

Martin Renner, Jan 18 2011

Keywords

Comments

A049415(n) + A180426(n) + A180429(n) + a(n) = A052268(n).

Crossrefs

Formula

a(n) = A167615(n)-A167615(n-1).
Showing 1-4 of 4 results.