A167638 Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no peaks at even level.
1, 0, 0, 1, 0, 2, 1, 5, 5, 15, 21, 51, 85, 188, 344, 730, 1407, 2935, 5831, 12094, 24480, 50754, 103995, 216043, 446447, 930206, 1934328, 4043275, 8448882, 17716170, 37166403, 78163336, 164520540, 346935912, 732317063, 1548096255, 3275859473
Offset: 0
Keywords
Examples
a(5)=2 because we have UUUDDUUDDD and UUUUUDDDDD.
Programs
-
Maple
G := ((1+2*z-z^3-sqrt(1-4*z^2-2*z^3+z^6))*1/2)/(z*(1+z)): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, n), n = 0 .. 38);
-
Maxima
a(n):=sum(sum(((sum((-1)^(n-j-1)*binomial(j,-k-j+i+1)*binomial(k+j-1,k-1)*binomial(2*k+j-2,k+j-1),j,0,-k+i+1))*binomial(n-i-1,n-k-i))/k,k,1,n-i),i,0,n); /* Vladimir Kruchinin, May 06 2018 */
Formula
G.f.: (1 + 2*z - z^3 - sqrt(1 - 4*z^2 - 2*z^3 + z^6))/(2*z*(1 + z)).
a(n) = Sum_{i=0..n} Sum_{k=1..n-i} Sum_{j=0..i-k+1} (-1)^(n-j-1)*C(j,-k-j+i+1)*C(k+j-1,k-1)*C(2*k+j-2,k+j-1)*C(n-i-1,n-k-i)/k. - Vladimir Kruchinin, May 06 2018
D-finite with recurrence (n+1)*a(n) +a(n-1) +(-4*n+7)*a(n-2) +2*(-n+2)*a(n-3) +a(n-4) -a(n-5) +(n-7)*a(n-6)=0. - R. J. Mathar, Jul 24 2022
Conjecture: g.f. A(x) = 1 + (x^3)*exp(Sum_{n >= 1} g(n, x)*x^(2*n)/n), where g(n, x) = Sum_{k = 0..n} binomial(n, k)^2*(1 + x)^k. Cf. A129509. - Peter Bala, Sep 10 2024
Comments