cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167638 Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no peaks at even level.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 5, 5, 15, 21, 51, 85, 188, 344, 730, 1407, 2935, 5831, 12094, 24480, 50754, 103995, 216043, 446447, 930206, 1934328, 4043275, 8448882, 17716170, 37166403, 78163336, 164520540, 346935912, 732317063, 1548096255, 3275859473
Offset: 0

Views

Author

Emeric Deutsch, Nov 08 2009

Keywords

Comments

a(n) = A167637(n,0).

Examples

			a(5)=2 because we have UUUDDUUDDD and UUUUUDDDDD.
		

Crossrefs

Programs

  • Maple
    G := ((1+2*z-z^3-sqrt(1-4*z^2-2*z^3+z^6))*1/2)/(z*(1+z)): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, n), n = 0 .. 38);
  • Maxima
    a(n):=sum(sum(((sum((-1)^(n-j-1)*binomial(j,-k-j+i+1)*binomial(k+j-1,k-1)*binomial(2*k+j-2,k+j-1),j,0,-k+i+1))*binomial(n-i-1,n-k-i))/k,k,1,n-i),i,0,n);
    /* Vladimir Kruchinin, May 06 2018 */

Formula

G.f.: (1 + 2*z - z^3 - sqrt(1 - 4*z^2 - 2*z^3 + z^6))/(2*z*(1 + z)).
a(n) = Sum_{i=0..n} Sum_{k=1..n-i} Sum_{j=0..i-k+1} (-1)^(n-j-1)*C(j,-k-j+i+1)*C(k+j-1,k-1)*C(2*k+j-2,k+j-1)*C(n-i-1,n-k-i)/k. - Vladimir Kruchinin, May 06 2018
D-finite with recurrence (n+1)*a(n) +a(n-1) +(-4*n+7)*a(n-2) +2*(-n+2)*a(n-3) +a(n-4) -a(n-5) +(n-7)*a(n-6)=0. - R. J. Mathar, Jul 24 2022
Conjecture: g.f. A(x) = 1 + (x^3)*exp(Sum_{n >= 1} g(n, x)*x^(2*n)/n), where g(n, x) = Sum_{k = 0..n} binomial(n, k)^2*(1 + x)^k. Cf. A129509. - Peter Bala, Sep 10 2024