A167763 Pendular triangle (p=0), read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), otherwise T(n,k) = T(n,n-1-k) + p*T(n-1,k), for n >= k <= 0, with T(n,0) = 1 and T(n,n) = 0^n.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 7, 4, 1, 0, 1, 5, 12, 12, 5, 1, 0, 1, 6, 18, 30, 18, 6, 1, 0, 1, 7, 25, 55, 55, 25, 7, 1, 0, 1, 8, 33, 88, 143, 88, 33, 8, 1, 0, 1, 9, 42, 130, 273, 273, 130, 42, 9, 1, 0, 1, 10, 52, 182, 455, 728, 455, 182, 52, 10, 1, 0
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 1, 0; 1, 2, 1, 0; 1, 3, 3, 1, 0; 1, 4, 7, 4, 1, 0; 1, 5, 12, 12, 5, 1, 0; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
- E. Getzler, The semi-classical approximation for modular operads, arXiv:alg-geom/9612005, 1996.
Crossrefs
Programs
-
Magma
function T(n,k,p) if k lt 0 or n lt k then return 0; elif k eq 0 then return 1; elif k eq n then return 0; elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p); else return T(n,n-k-1,p) + p*T(n-1,k,p); end if; return T; end function; [T(n,k,0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
-
Mathematica
T[n_, k_, p_]:= T[n,k,p] = If[n
G. C. Greubel, Feb 17 2021 *) -
PARI
{T(n,k)=if(k==0,1,if(n==k,0,if(n>2*k,binomial(n+k+1,k)*(n-2*k+1)/(n+k+1),T(n,n-1-k))))} \\ Paul D. Hanna, Nov 12 2009
-
Sage
@CachedFunction def T(n, k, p): if (k<0 or n
2*k): return T(n,n-k,p) + T(n-1,k,p) else: return T(n, n-k-1, p) + p*T(n-1, k, p) flatten([[T(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
Formula
T(2n+m) = [A001764^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of A001764.
If n > 2k, T(n,k) = binomial(n+k+1,k)*(n-2k+1)/(n+k+1), else T(n,k) = T(n,n-1-k), with conditions: T(n,0)=1 for n>=0 and T(n,n)=0 for n > 0. - Paul D. Hanna, Nov 12 2009
Sum_{k=0..n} T(n, k, p=0) = A093951(n). - G. C. Greubel, Feb 17 2021
Comments