cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167769 Pendular trinomial triangle (p=0), read by rows of 2n+1 terms (n>=0), defined by the recurrence : if 0

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 3, 6, 8, 6, 3, 1, 0, 0, 1, 4, 10, 18, 24, 18, 10, 4, 1, 0, 0, 1, 5, 15, 33, 57, 75, 57, 33, 15, 5, 1, 0, 0, 1, 6, 21, 54, 111, 186, 243, 186, 111, 54, 21, 6, 1, 0, 0, 1, 7, 28, 82, 193, 379, 622, 808, 622, 379, 193, 82, 28, 7, 1, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2009

Keywords

Comments

See A119369 for p=1 and A122445 for p=2. The diagonals may be generated by iterated convolutions of a base sequence B (A000108(n)) with the sequence C (A000957(n+1)) of central terms.

Examples

			Triangle begins :
  1;
  1, 0,  0;
  1, 1,  1,  0,  0;
  1, 2,  3,  2,  1,  0,  0;
  1, 3,  6,  8,  6,  3,  1,  0,  0;
  1, 4, 10, 18, 24, 18, 10,  4,  1, 0, 0,
  1, 5, 15, 33, 57, 75, 57, 33, 15, 5, 1, 0, 0; ...
		

References

  • Kim, Ki Hang; Rogers, Douglas G.; Roush, Fred W. Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577--594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013) - From N. J. A. Sloane, Jun 05 2012

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n=0 then 1;
        elif k<0 or k>2*(n-1) then 0;
        elif n=2 and k<3 then 1;
        elif kG. C. Greubel, Mar 17 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 && n==0, 1, If[k<0 || k>2*(n-1), 0, If[n==2 && k<3, 1, If[kG. C. Greubel, Mar 17 2021 *)
  • PARI
    T(n, k)=if(k==0 && n==0, 1, if(k>2*n-2 || k<0, 0, if(n==2 && k<=2, 1, if(kPaul D. Hanna, Nov 12 2009
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 and n==0): return 1
        elif (k<0 or k>2*(n-1)): return 0
        elif (n==2 and k<3): return 1
        elif (kG. C. Greubel, Mar 17 2021

Formula

Sum_{k=0..2*n} T(n,k) = A071724(n) = [n=0] + 3*binomial(2n,n-1)/(n+2) = [n=0] + n*C(n)/(n+2), where C(n) are the Catalan numbers (A000108). - G. C. Greubel, Mar 17 2021