cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167774 Subsequence of A167708 whose indices are congruent to 1 mod 5, i.e., a(n) = A167708(5*n+1).

Original entry on oeis.org

9, 1530, 520191, 176863410, 60133039209, 20445056467650, 6951259065961791, 2363407637370541290, 803551645446918076809, 273205196044314775573770, 92888963103421576777004991, 31581974249967291789406123170, 10737778356025775786821304872809
Offset: 0

Views

Author

Richard Choulet, Nov 11 2009

Keywords

Examples

			a(0)=A167708(1)=9, a(1)=A167708(6)=1530.
		

Crossrefs

Programs

  • Magma
    I:=[9, 1530]; [n le 2 select I[n] else 340*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jun 24 2016
  • Maple
    u(0):=9:for n from 0 to 20 do u(n+1):=170*u(n)+39*sqrt(19*u(n)^2-1539):od:seq(u(n),n=0..20); taylor(((9+1530*z-9*z*340)/(1-340*z+z^2)),z=0,20);
  • Mathematica
    LinearRecurrence[{340, -1}, {9, 1530}, 50] (* G. C. Greubel, Jun 23 2016 *)

Formula

Recurrence formulas: a(n+2) = 340*a(n+1) - a(n) or a(n+1) = 170*a(n) + 39*sqrt(19*a(n)^2 - 1539).
G.f.: (9 - 1530*z)/(1 - 340*z + z^2).
a(n) = (9/2)*(170 + 39*sqrt(19))^(n) + (9/2)*(170 - 39*sqrt(19))^(n).
a(n) = 9*A114048(n+1). - R. J. Mathar, Feb 19 2016