cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167775 Subsequence of A167708 whose indices are congruent to 1 mod 5, i.e., a(n) = A167708(5n+1).

Original entry on oeis.org

10, 2441, 829930, 282173759, 95938248130, 32618722190441, 11090269606501810, 3770659047488424959, 1282012985876457984250, 435880644538948226220041, 148198137130256520456829690, 50386930743642678007095874559, 17131408254701380265892140520370
Offset: 0

Views

Author

Richard Choulet, Nov 11 2009

Keywords

Comments

Solutions to the Pell equation a(n)^2 - 19*b(n)^2 = 81. The corresponding b(n) are in A167822. - Klaus Purath, Aug 31 2025

Examples

			a(0) = A167708(1) = 10, a(1) = A167708(6) = 2441, ...
		

Crossrefs

Programs

  • Magma
    I:=[10,2441]; [n le 2 select I[n] else 340*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jun 24 2016
  • Maple
    u(0):=10:u(1):=2441:for n from 0 to 20 do u(n+2):=340*u(n+1)-u(n):od:seq(u(n),n=0..20); taylor(((10+2441*z-10*z*340)/(1-340*z+z^2)),z=0,20);
  • Mathematica
    LinearRecurrence[{340, -1}, {10, 2441}, 50] (* G. C. Greubel, Jun 23 2016 *)

Formula

a(n+2) = 340*a(n+1) - a(n).
a(n+1) = 170*a(n) + 39*sqrt(19*a(n)^2 - 1539).
G.f.: (10 + 2441*z - 10*z*340)/(1 - 340*z + z^2).
a(n) = ((10 + sqrt(19))/2)*(170 + 39*sqrt(19))^(n) + ((10 - sqrt(19))/2)* (170 - 39*sqrt(19))^(n).