cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167827 Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

Original entry on oeis.org

1, 38, 1406, 52022, 1924814, 71218118, 2635070366, 97497603542, 3607411331054, 133474219248998, 4938546112212926, 182726206151878262, 6760869627619495694, 250152176221921340678, 9255630520211089605086
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170757, although the two sequences start to be different at a(15).
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Maple
    (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^15 - 36*t^14 - 36*t^13 - 36*t^12 - 36*t^11 - 36*t^10 - 36*t^9 - 36*t^8 - 36*t^7 - 36*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1) ;
    taylor(%,t=0,64) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Apr 12 2019
  • Mathematica
    CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^15 - 36*t^14 - 36*t^13 - 36*t^12 - 36*t^11 - 36*t^10 - 36*t^9 - 36*t^8 - 36*t^7 - 36*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 27 2016 *)
    coxG[{15,666,-36}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 11 2025 *)

Formula

G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^15 - 36*t^14 - 36*t^13 - 36*t^12 - 36*t^11 - 36*t^10 - 36*t^9 - 36*t^8 - 36*t^7 - 36*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1).