A167884 Triangle read by rows: T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 8.
1, 1, 1, 1, 18, 1, 1, 179, 179, 1, 1, 1636, 6086, 1636, 1, 1, 14757, 144362, 144362, 14757, 1, 1, 132854, 2941135, 7218100, 2941135, 132854, 1, 1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1, 1, 10761672, 1001178268, 9211047544, 18315657030, 9211047544, 1001178268, 10761672, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 18, 1; 1, 179, 179, 1; 1, 1636, 6086, 1636, 1; 1, 14757, 144362, 144362, 14757, 1; 1, 132854, 2941135, 7218100, 2941135, 132854, 1; 1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- G. Strasser, Generalisation of the Euler adic, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_8(n,k)
Crossrefs
Programs
-
Mathematica
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]]; A167884[n_, k_]:= T[n,k,8]; Table[A167884[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *)
-
Sage
@CachedFunction def T(n,k,m): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m) def A167884(n,k): return T(n,k,8) flatten([[ A167884(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 18 2022
Formula
T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 8.
Sum_{k=1..n} T(n, k) = A084948(n-1).
Extensions
Edited by N. J. A. Sloane, May 08 2013