A167894 Expansion of g.f.: 1/(Sum_{k >= 0} k!*x^k).
1, -1, -1, -3, -13, -71, -461, -3447, -29093, -273343, -2829325, -31998903, -392743957, -5201061455, -73943424413, -1123596277863, -18176728317413, -311951144828863, -5661698774848621, -108355864447215063
Offset: 0
Keywords
References
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 40.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..400
Programs
-
Magma
m:=20; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(&+[Factorial(k)*x^k: k in [0..m+1]]) )); // G. C. Greubel, Feb 07 2019 -
Mathematica
CoefficientList[Series[1/(Sum[k!*x^k, {k, 0, 25}]), {x, 0, 20}], x] (* G. C. Greubel, Jun 30 2016 *)
-
Maxima
a(n) := if n=0 then 1 else -sum( a(i)*(n-i)!,i,0,n-1); /* Vladimir Kruchinin, Oct 10 2024 */
-
PARI
m=20; my(x='x+O('x^m)); Vec(1/sum(k=0,m+1, k!*x^k)) \\ G. C. Greubel, Feb 07 2019
-
Sage
def A167894_list(len): R, C = [1], [1]+[0]*(len-1) for n in (1..len-1): for k in range(n, 0, -1): C[k] = C[k-1] * k C[0] = -sum(C[k] for k in (1..n)) R.append(C[0]) return R print(A167894_list(20)) # Peter Luschny, Feb 19 2016
-
Sage
m=20; (1/sum(factorial(k)*x^k for k in range(m+1))).series(x, m).coefficients(x, sparse=False) # G. C. Greubel, Feb 07 2019
Formula
a(n) = - Sum_{i=0..n-1} a(i)*(n-i)! for n > 0 with a(0) = 1. - Vladimir Kruchinin, Oct 10 2024
From Sergei N. Gladkovskii, Jun 24 2012, Oct 15 2012, Nov 18 2012, Dec 26 2012, Apr 25 2013, May 29 2013, Aug 08 2013, Nov 19 2013: (Start) Continued fractions:
G.f.: 1 - x/Q(0), where Q(k) = 1 - (k+1)*x/(1 - (k+2)*x/Q(k+1)).
G.f.: U(0) where U(k) = 1 - x*(k+1)/(1 - x*(k+1)/U(k+1)).
G.f.: 1/G(0) where G(k) = 1 + x*(2*k+1)/(1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))).
G.f.: A(x) = 1 - x/G(0) where G(k) = 1 + (k+1)*x - x*(k+2)/G(k+1).
G.f.: x*Q(0), where Q(k) = 1/x - 1 - 2*k - (k+1)^2/Q(k+1).
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))).
G.f.: 2/Q(0), where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/Q(k+1) )).
G.f.: conjecture: Q(0), where Q(k) = 1 + k*x - (k+1)*x/Q(k+1). (End)
a(n) ~ -n! * (1 - 2/n - 1/n^2 - 5/n^3 - 32/n^4 - 253/n^5 - 2381/n^6 - 25912/n^7 - 319339/n^8 - 4388949/n^9 - 66495386/n^10 - ...). - Vaclav Kotesovec, Dec 08 2020
Comments