cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167894 Expansion of g.f.: 1/(Sum_{k >= 0} k!*x^k).

Original entry on oeis.org

1, -1, -1, -3, -13, -71, -461, -3447, -29093, -273343, -2829325, -31998903, -392743957, -5201061455, -73943424413, -1123596277863, -18176728317413, -311951144828863, -5661698774848621, -108355864447215063
Offset: 0

Views

Author

Philippe Deléham, Nov 15 2009

Keywords

Comments

Essentially the same as A003319, which is the main entry for these numbers. - N. J. A. Sloane, Jun 11 2013

References

  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 40.

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(&+[Factorial(k)*x^k: k in [0..m+1]]) )); // G. C. Greubel, Feb 07 2019
  • Mathematica
    CoefficientList[Series[1/(Sum[k!*x^k, {k, 0, 25}]), {x, 0, 20}], x] (* G. C. Greubel, Jun 30 2016 *)
  • Maxima
    a(n) := if n=0 then 1 else -sum( a(i)*(n-i)!,i,0,n-1); /* Vladimir Kruchinin, Oct 10 2024 */
    
  • PARI
    m=20; my(x='x+O('x^m)); Vec(1/sum(k=0,m+1, k!*x^k)) \\ G. C. Greubel, Feb 07 2019
    
  • Sage
    def A167894_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = C[k-1] * k
            C[0] = -sum(C[k] for k in (1..n))
            R.append(C[0])
        return R
    print(A167894_list(20)) # Peter Luschny, Feb 19 2016
    
  • Sage
    m=20; (1/sum(factorial(k)*x^k for k in range(m+1))).series(x, m).coefficients(x, sparse=False) # G. C. Greubel, Feb 07 2019
    

Formula

a(n) = - Sum_{i=0..n-1} a(i)*(n-i)! for n > 0 with a(0) = 1. - Vladimir Kruchinin, Oct 10 2024
From Sergei N. Gladkovskii, Jun 24 2012, Oct 15 2012, Nov 18 2012, Dec 26 2012, Apr 25 2013, May 29 2013, Aug 08 2013, Nov 19 2013: (Start) Continued fractions:
G.f.: 1 - x/Q(0), where Q(k) = 1 - (k+1)*x/(1 - (k+2)*x/Q(k+1)).
G.f.: U(0) where U(k) = 1 - x*(k+1)/(1 - x*(k+1)/U(k+1)).
G.f.: 1/G(0) where G(k) = 1 + x*(2*k+1)/(1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))).
G.f.: A(x) = 1 - x/G(0) where G(k) = 1 + (k+1)*x - x*(k+2)/G(k+1).
G.f.: x*Q(0), where Q(k) = 1/x - 1 - 2*k - (k+1)^2/Q(k+1).
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))).
G.f.: 2/Q(0), where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/Q(k+1) )).
G.f.: conjecture: Q(0), where Q(k) = 1 + k*x - (k+1)*x/Q(k+1). (End)
a(n) ~ -n! * (1 - 2/n - 1/n^2 - 5/n^3 - 32/n^4 - 253/n^5 - 2381/n^6 - 25912/n^7 - 319339/n^8 - 4388949/n^9 - 66495386/n^10 - ...). - Vaclav Kotesovec, Dec 08 2020