A167923 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183255
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,-91).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-14*x+104*x^16-91*x^17) )); // G. C. Greubel, Sep 10 2023 -
Mathematica
CoefficientList[Series[(1+t)*(1-t^16)/(1-14*t+104*t^16-91*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *) coxG[{16,91,-13}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 22 2020 *)
-
SageMath
def A167955_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^16)/(1-14*x+104*x^16-91*x^17) ).list() A167955_list(40) # G. C. Greubel, Sep 10 2023
Formula
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 91*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
From G. C. Greubel, Sep 10 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 14*t + 104*t^16 - 91*t^17).
a(n) = 13*Sum_{j=1..15} a(n-j) - 91*a(n-16). (End)
Comments