A167925 Triangle, T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2), read by rows.
0, 1, 1, 1, 2, 3, 0, 2, 6, 12, -1, 0, 9, 32, 75, -1, -4, 9, 80, 275, 684, 0, -8, 0, 192, 1000, 3240, 8232, 1, -8, -27, 448, 3625, 15336, 47677, 122368, 1, 0, -81, 1024, 13125, 72576, 276115, 835584, 2158569, 0, 16, -162, 2304, 47500, 343440, 1599066, 5705728, 16953624, 44010000
Offset: 0
Examples
Triangle begins as: 0; 1, 1; 1, 2, 3; 0, 2, 6, 12; -1, 0, 9, 32, 75; -1, -4, 9, 80, 275, 684; 0, -8, 0, 192, 1000, 3240, 8232; 1, -8, -27, 448, 3625, 15336, 47677, 122368; 1, 0, -81, 1024, 13125, 72576, 276115, 835584, 2158569;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A167925:= func< n,k | Round((Sqrt(k+1))^(n-1)*Evaluate(ChebyshevSecond(n), Sqrt(k+1)/2)) >; [A167925(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 11 2023
-
Mathematica
(* First program *) m[k_]= {{k,1}, {-1,1}}; v[0, k_]:= {0,1}; v[n_, k_]:= v[n, k]= m[k].v[n-1,k]; T[n_, k_]:= v[n, k][[1]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Second program *) A167925[n_, k_]:= (Sqrt[k+1])^(n-1)*ChebyshevU[n-1, Sqrt[k+1]/2]; Table[A167925[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 11 2023 *)
-
SageMath
def A167925(n,k): return (sqrt(k+1))^(n-1)*chebyshev_U(n-1, sqrt(k+1)/2) flatten([[A167925(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 11 2023
Formula
T(n, k) = (-1)^(n+1) * [x^(n-1)]( 1/(1 + (k+1)*x + (k+1)*x^2) ). - Francesco Daddi, Aug 04 2011 (modified by G. C. Greubel, Sep 11 2023)
From G. C. Greubel, Sep 11 2023: (Start)
T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2).
T(n, 0) = A128834(n).
T(n, 2) = A057083(n-1).
T(n, 3) = A001787(n).
T(n, 4) = A030191(n-1).
T(n, 5) = A030192(n-1).
T(n, 6) = A030240(n-1).
T(n, 7) = A057084(n-1).
T(n, 8) = A057085(n).
T(n, 9) = A057086(n-1).
T(n, 10) = A190871(n).
T(n, 11) = A190873(n). (End)
Extensions
Edited by G. C. Greubel, Sep 11 2023