A167926 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398456
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,-120).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-16*x+135*x^16-120*x^17) )); // G. C. Greubel, Sep 10 2023 -
Mathematica
coxG[{16,120,-15}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 27 2015 *) CoefficientList[Series[(1+t)*(1-t^16)/(1-16*t+135*t^16-120*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
-
SageMath
def A167926_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^16)/(1-16*x+135*x^16-120*x^17) ).list() A167926_list(40) # G. C. Greubel, Sep 10 2023
Formula
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 120*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).
From G. C. Greubel, Sep 10 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 16*t + 135*t^16 - 120*t^17).
a(n) = 15*Sum_{j=1..15} a(n-j) - 120*a(n-16). (End)
Comments