A167942 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,-325).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-26*x+350*x^16-325*x^17) )); // G. C. Greubel, Sep 08 2023 -
Mathematica
CoefficientList[Series[(1+t)*(1-t^16)/(1-26*t+350*t^16-325*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 08 2023 *) coxG[{16,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 28 2018 *)
-
SageMath
def A167942_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^16)/(1-26*x+350*x^16-325*x^17) ).list() A167942_list(40) # G. C. Greubel, Sep 08 2023
Formula
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 325*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).
From G. C. Greubel, Sep 08 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 26*t + 350*t^16 - 325*t^17).
a(n) = 25*Sum_{j=1..15} a(n-j) - 325*a(n-16). (End)
Comments