cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167946 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339100000000, 610173000000000, 18305190000000000, 549155700000000000, 16474671000000000000, 494240130000000000000, 14827203900000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-30*x+464*x^16-435*x^17) )); // G. C. Greubel, Sep 07 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-30*t+464*t^16-435*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016; Sep 07 2023 *)
    coxG[{16, 435, -29, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 07 2023 *)
  • SageMath
    def A167946_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-30*x+464*x^16-435*x^17) ).list()
    A167946_list(40) # G. C. Greubel, Sep 07 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 435*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
From G. C. Greubel, Sep 07 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 30*t + 464*t^16 - 435*t^17).
a(n) = 37*Sum_{j=1..15} a(n-j) - 703*a(n-16). (End)