A167947 Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
1, 32, 992, 30752, 953312, 29552672, 916132832, 28400117792, 880403651552, 27292513198112, 846067909141472, 26228105183385632, 813071260684954592, 25205209081233592352, 781361481518241362912, 24222205927065482250272
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,-465).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-31*x+495*x^16-465*x^17) )); // G. C. Greubel, Sep 07 2023 -
Mathematica
coxG[{16,465,-30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 16 2015 *) CoefficientList[Series[(1+t)*(1-t^16)/(1-31*t+495*t^16-465*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016; Sep 07 2023 *)
-
SageMath
def A167947_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^16)/(1-31*x+495*x^16-465*x^17) ).list() A167947_list(40) # G. C. Greubel, Sep 07 2023
Formula
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 465*t^16 - 30*t^15 - 30*t^14 - 30*t^13 - 30*t^12 - 30*t^11 - 30*t^10 - 30*t^9 - 30*t^8 - 30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1).
From G. C. Greubel, Sep 07 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 31*t + 495*t^16 - 465*t^17).
a(n) = 30*Sum_{j=1..15} a(n-j) - 465*a(n-16). (End)
Comments