cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167949 Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 33, 1056, 33792, 1081344, 34603008, 1107296256, 35433480192, 1133871366144, 36283883716608, 1161084278931456, 37154696925806592, 1188950301625810944, 38046409652025950208, 1217485108864830406656, 38959523483674573012992
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170752, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-32*x+527*x^16-496*x^17) )); // G. C. Greubel, Sep 07 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-32*t+527*t^16-496*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016; Sep 07 2023 *)
    coxG[{16,496,-31}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 22 2020 *)
  • SageMath
    def A167949_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-32*x+527*x^16-496*x^17) ).list()
    A167949_list(40) # G. C. Greubel, Sep 07 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 496*t^16 - 31*t^15 - 31*t^14 - 31*t^13 - 31*t^12 - 31*t^11 - 31*t^10 - 31*t^9 - 31*t^8 - 31*t^7 - 31*t^6 - 31*t^5 - 31*t^4 - 31*t^3 - 31*t^2 - 31*t + 1).
From G. C. Greubel, Sep 07 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 32*t + 527*t^16 - 496*t^17).
a(n) = 31*Sum_{j=1..15} a(n-j) - 496*a(n-16). (End)