A167987 Number of (undirected) cycles in the graph of the n-orthoplex, n>=2.
1, 63, 2766, 194650, 21086055, 3257119761, 679314442828, 183842034768036, 62630787876947325, 26224409462275175635, 13236607762537219815546, 7925653200467421739217118, 5554198822066977588903819331, 4503367772662184077396436475525, 4182811121982123218357983540881240
Offset: 2
Keywords
Examples
a(3) = 63, because in dimension n=3, the orthoplex is the octahedron, which has 63 cycles in its graph.
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..100
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
- Eric Weisstein's World of Mathematics, Cross Polytope
- Eric Weisstein's World of Mathematics, Graph Cycle
Crossrefs
Cf. A167986.
Programs
-
Magma
b:= func< n,k,j | (-1)^j*Binomial(n,j)*Binomial(2*(n-j),k-2*j)*2^(j-1)*Factorial(k-j-1) >; A167986:= func< n,k | (&+[b(n,k,j): j in [0..Floor(k/2)]]) >; A167987:= func< n | (&+[A167986(n,k): k in [3..2*n]]) >; [A167987(n): n in [2..30]]; // G. C. Greubel, Jan 17 2023
-
Mathematica
a[n_]:= Sum[Sum[(-1)^j*Binomial[n, j]*Binomial[2*(n-j), k-2*j]*2^j*(k - j-1)!, {j, 0, k/2}], {k, 3, 2 n}]/2; Array[a, 15, 2] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
-
PARI
a(n)=sum(k=3,2*n, sum(j=0,k\2, (-1)^j*binomial(n,j)*binomial(2*(n-j),k-2*j)*2^j*(k-j-1)!))/2; \\ Andrew Howroyd, May 09 2017
-
SageMath
def A167986(n,k): return simplify(binomial(2*n, k)*gamma(k)*hypergeometric([(1-k)/2, -k/2], [1-k, 1/2 -n], -2)/2) @CachedFunction def A167987(n): return sum(A167986(n,k) for k in range(3,2*n+1)) [A167987(n) for n in range(2,31)] # G. C. Greubel, Jan 17 2023
Formula
a(n) = Sum_{k=3..2*n} Sum_{j=0..floor(k/2)} (-1)^j*binomial(n,j) * binomial(2*(n-j),k-2*j) * 2^j*(k-j-1)!/2. - Andrew Howroyd, May 09 2017
Extensions
a(8)-a(11) from Eric W. Weisstein, Dec 19 2013
a(12) from Eric W. Weisstein, Dec 21 2013
a(13) from Eric W. Weisstein, Jan 08 2014
a(14) from Eric W. Weisstein, Apr 09 2014
a(15)-a(16) from Andrew Howroyd, May 09 2017
Comments