cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167987 Number of (undirected) cycles in the graph of the n-orthoplex, n>=2.

Original entry on oeis.org

1, 63, 2766, 194650, 21086055, 3257119761, 679314442828, 183842034768036, 62630787876947325, 26224409462275175635, 13236607762537219815546, 7925653200467421739217118, 5554198822066977588903819331, 4503367772662184077396436475525, 4182811121982123218357983540881240
Offset: 2

Views

Author

Andrew Weimholt, Nov 16 2009

Keywords

Comments

Row sums of triangle in A167986.
The n-orthoplex, also known as the n-cross-polytope, is the dual of the n-cube.
A.k.a. number of (undirected) cycles in the n-cocktail party graph. - Eric W. Weisstein, Dec 29 2013

Examples

			a(3) = 63, because in dimension n=3, the orthoplex is the octahedron, which has 63 cycles in its graph.
		

Crossrefs

Cf. A167986.

Programs

  • Magma
    b:= func< n,k,j | (-1)^j*Binomial(n,j)*Binomial(2*(n-j),k-2*j)*2^(j-1)*Factorial(k-j-1) >;
    A167986:= func< n,k | (&+[b(n,k,j): j in [0..Floor(k/2)]]) >;
    A167987:= func< n | (&+[A167986(n,k): k in [3..2*n]]) >;
    [A167987(n): n in [2..30]]; // G. C. Greubel, Jan 17 2023
    
  • Mathematica
    a[n_]:= Sum[Sum[(-1)^j*Binomial[n, j]*Binomial[2*(n-j), k-2*j]*2^j*(k - j-1)!, {j, 0, k/2}], {k, 3, 2 n}]/2; Array[a, 15, 2] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
  • PARI
    a(n)=sum(k=3,2*n, sum(j=0,k\2, (-1)^j*binomial(n,j)*binomial(2*(n-j),k-2*j)*2^j*(k-j-1)!))/2; \\ Andrew Howroyd, May 09 2017
    
  • SageMath
    def A167986(n,k): return simplify(binomial(2*n, k)*gamma(k)*hypergeometric([(1-k)/2, -k/2], [1-k, 1/2 -n], -2)/2)
    @CachedFunction
    def A167987(n): return sum(A167986(n,k) for k in range(3,2*n+1))
    [A167987(n) for n in range(2,31)] # G. C. Greubel, Jan 17 2023

Formula

a(n) = Sum_{k=3..2*n} Sum_{j=0..floor(k/2)} (-1)^j*binomial(n,j) * binomial(2*(n-j),k-2*j) * 2^j*(k-j-1)!/2. - Andrew Howroyd, May 09 2017

Extensions

a(8)-a(11) from Eric W. Weisstein, Dec 19 2013
a(12) from Eric W. Weisstein, Dec 21 2013
a(13) from Eric W. Weisstein, Jan 08 2014
a(14) from Eric W. Weisstein, Apr 09 2014
a(15)-a(16) from Andrew Howroyd, May 09 2017